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1 假设检验的若干基本概念

1.1 原假设和备择假设

设有参数分布族 {f(x; θ) : θ ∈ Θ}，此处 Θ 为参数空间。X1, · · · , Xn 是从上述分布族中抽

取的简单样本。

在参数假设检验问题中，感兴趣的是 θ 是否属于参数空间 Θ 的某个非空真子集 Θ0，则命题

H0 : θ ∈ Θ0 称为零假设或原假设，其确切含义是：存在一个 θ0 ∈ Θ0 使得 X 的分布为 f(x; θ0)。

记 Θi ⊆ Θ−Θ0，则命题 H1 : θ ∈ Θ1 称为对立假设或备择假设。于是假设检验问题表示为

H0 : θ ∈ Θ0 ↔ H1 : θ ∈ Θ1

其中，若 Θ0 或 Θ1 只包含参数空间 Θ 中的一个点，则称为简单假设（simple hypothesis）；否则，

称为复合假设（composite hypothesis）。

1.2 拒绝域、检验函数和检验统计量

定义 1.1 (拒绝域、接受域) 设样本X = (X1, · · · , Xn) ∈ X，其中X 为样本空间。将X 分成

不相交的两部分D和D = X −D，若X ∈ D就拒绝H0，而X ∈ D就接受H0。那么称D为

拒绝域或否定域（reject region），而 D为接受域。

定义 1.2 (检验函数) 检验函数 φ(X) : X → [0, 1]是定义在样本空间 X 上，取值为 [0, 1]的函

数。它表示：当有了具体样本X 后，拒绝 H0的概率。

若 φ(X) = 1，则以概率为 1 拒绝 H0；若 φ(X) = 0，则以概率为 0 拒绝 H0 （即以概率为

1 接受 H0）。检验函数有两种，分别对应于两种不同的检验：

1. 非随机化检验（non-randomized test）。若检验函数 φ(X) 只取 0 或 1 两个值。此时拒绝域可

表示为

D = {X : φ(X) = 1}

2. 随机化检验（randomized test）。若对某些样本 X 有 0 < φ(X) < 1 ，即检验函数 φ(X) 取

值于 [0, 1]。
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以简单假设为例，若拒绝域可写作 D = {X : T (X) > c}，其中 T = T (X) 为样本 X 对应

的统计量。此时称 T 为检验统计量，而 c 称为临值。这个假设检验对应的非随机化检验函数可

表示为

φ(X) =


1, T (X) > c

r, T (X) = c

0, T (X) < c

其中 r ∈ (0, 1) 是一个随机变量。

1.3 两类错误与功效函数

定义 1.3 (两类错误) 在假设检验问题中可能出现下列两种情形会犯错误：

1. 零假设 H0 本来是对的，由于样本的随机性，观察值落入拒绝域 D，错误地将 H0 拒绝了，

称为弃真。这时犯的错误称为第一类错误（type I error）。
2. 零假设H0本来不对，由于样本的随机性，观察值落入接受域D，错误地将H0接受了，称

为取伪。这时犯的错误称为第二类错误（type II error）。

应当注意，在每一具体场合，只会犯两类错误中的一个。当检验确定后，犯两类错误的概率

也就确定了。我们希望犯两类错误的概率越小越好，但这一点很难做到，在样本大小 n 固定的

前提下，二者不可兼得。

定义 1.4 (功效函数) 设 φ(X)是 H0 : θ ∈ Θ0 ⇄ H1 : θ ∈ Θ1的一个检验函数，则

βφ(θ) = Pθ{reject H0 use φ} = Eθ[φ(X)] θ ∈ Θ

称为 φ的功效函数（power function），也称为效函数或势函数。

知道了检验 φ(X)的功效函数 βφ(θ)后，就可以计算犯两类错误的概率。若以 α∗
φ(θ)和 γ∗

φ(θ)

分别记犯第一、二类错误的概率，则

1. 犯第一类错误（type I error）的概率可表示为

α∗
φ(θ) =

βφ(θ), θ ∈ Θ0

0, θ ∈ Θ1

2. 犯第二类错误（type II error）的概率可表示为

γ∗
φ(θ) =

0, θ ∈ Θ0

1− βφ(θ), θ ∈ Θ1

1.4 检验水平和控制犯第一类错误概率的原则

Neyman-Pearson 原则：保证犯第一类错误（type I error）的概率不超过指定数值 α（α ∈ (0, 1)，

通常取较小的数）的检验中，寻找犯第二类错误（type II error）的概率仅可能小的检验。
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若记

Sα = {φ : βφ(θ) ≤ α, θ ∈ Θ0}

即 Sα 表示由所有犯第一类错误的概率都不超过 α 的检验函数构成的类。根据 Neyman-Pearson
原则，在 Sα 中挑选“犯第二类错误的概率仅可能小的检验”。

定义 1.5 (检验水平) 设 φ是一个检验，而 0 ≤ α ≤ 1。如果 φ犯第一类错误的概率总不超过 α

（或等价地说，φ ∈ Sα），则称 α为检验 φ的一个水平，而 φ称为显著性水平为 α的检验，简称

水平为 α的检验。

注意，以上的定义不设计第二类错误（type II error），故称这样的一个假设的检验问题为显

著性检验（significance test），其检验水平称为显著性水平。如此，检验的水平并不唯一：若 α 是

φ 的水平，则 α < α′ < 1 其中 α′ 也是 φ 的水平。

定义 1.6 (真实水平) 检验 φ的最小水平为其真实水平，即

real level of φ = sup
θ∈Θ0

{βφ(θ)}

1.5 求解假设检验问题的一般步骤

1. 根据问题的要求提出零假设 H0 和各择假设 H1。

2. 导出拒绝域 D 的形式，确定检验统计量 T = T (X)（无参数，在 H0 下分布已知）

D = {X : T (X) > c}

其中临值 c 待定（以 > 为例）。

3. 选取适当水平 α，利用检验统计量的分布求出临界值 c。

α∗
φ(θ) = βφ(θ) = Eθ[φ(X)] ≤ α θ ∈ Θ0

其中 φ(X) 为检验函数，满足 φ(X) = φ̃(T )。

4. 由样本 X 算出检验统计量 T (X) 的具体值，代入拒绝域 D 中，与临界值 c 相比较，作出接

受或者拒绝原假设 H0 的结论。

2 正态总体参数的假设检验

2.1 单个正态总体均值 µ的检验

设 X = (X1, · · · , Xn) 为从正态总体 N(µ, σ2) 中抽取的简单样本，求下列三类检验问题

1. H0 : µ = µ0 ↔ H1 : µ ̸= µ0

2. H0 : µ ≤ µ0 ↔ H1 : µ > µ0

3. H0 : µ ≥ µ0 ↔ H1 : µ < µ0
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其中 µ0 和检验水平 α 给定。

(1) 方差 σ2 已知时，µ 的检验方法

1. 双边检验
H0 : µ = µ0 ↔ H1 : µ ̸= µ0

构造检验统计量 U =
√
n(X̄ − µ0)/σ，故有

U |µ = µ0 ∼ N(0, 1)

所以对于拒绝域 D = {X : |U | > c} 有

PH0(|U | > c) = P
(∣∣∣∣√n(X̄ − µ0)

σ

∣∣∣∣ > c

)
= α

所以 c = zα/2 为标准正态分布的上 α/2 分位数点。

2. 单边检验
H0 : µ ≤ µ0 ↔ H1 : µ > µ0

先考虑检验

H∗
0 : µ = µ0 ↔ H1 : µ > µ0

构造检验统计量 U =
√
n(X̄ − µ0)/σ，仍然有

U |µ = µ0 ∼ N(0, 1)

所以对于拒绝域 D∗ = {X : U > c} 有

PH∗
0
(U > c) = P

(√
n(X̄ − µ0)

σ
> c

)
= α

所以 c = zα 为标准正态分布的上 α 分位数点。

对于现在的临值 c = zα/2，考虑原始的 H0 : µ ≤ µ0，此时犯第一类错误的概率为

PH0(U > zα) = PH0

(√
n(X̄ − µ0)

σ
> zα

)
= PH0

(√
n(X̄ − µ)

σ
> zα +

√
n(µ0 − µ)

σ

)
= 1− Φ

(
zα +

√
n(µ0 − µ)

σ

)
≤ 1− Φ(zα) = α

这是因为 H0 : µ0 − µ ≥ 0，以及标准正态分布的概率质量函数 Φ(·) 单增。故此时仍然满足水平

为 α 的检验，拒绝域为 D = D∗ = {X : U > zα}。

(2) 方差 σ2 未知时，µ 的检验方法

构造检验统计量 T =
√
n(X̄ − µ0)/S，则有

T |µ = µ0 ∼ tn−1

其他与方差已知情况类似。
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表 1: 单个正态总体均值的假设检验

方差情况 H0 H1 检验统计量及其分布 拒绝域

σ2 已知

µ = µ0 µ ̸= µ0

U =
√
n(X̄ − µ0)/σ

U |µ = µ0 ∼ N(0, 1)

|U | > zα/2

µ ≤ µ0 µ > µ0 U > zα

µ ≥ µ0 µ < µ0 U < −zα

σ2 未知

µ = µ0 µ ̸= µ0

T =
√
n(X̄ − µ0)/S

T |µ = µ0 ∼ tn−1

|T | > tn−1(α/2)

µ ≤ µ0 µ > µ0 T > tn−1(α)

µ ≥ µ0 µ < µ0 T < −tn−1(α)

2.2 单个正态总体方差 σ2的检验

同理，见教材《数理统计》（第三版）P 223− 225。

(1) 均值 µ 已知时，σ2 的检验方法

(2) 均值 µ 未知时，σ2 的检验方法

2.3 两个正态总体均值差 µ2 − µ1的检验

同理，见教材《数理统计》（第三版）P 226− 229。

(1) σ2
1 和 σ2

2 已知时，µ2 − µ1 的检验方法

(2) σ2
1 = σ2

2 = σ2 未知时，µ2 − µ1 的检验方法

(3) 成对比较问题

2.4 两个正态总体方差比 σ2
2/σ

2
1 的检验

同理，见教材《数理统计》（第三版）P 230− 232。

(1) 均值 µ1, µ2 未知时，方差比 σ2
2/σ

2
1 的检验方法

(2) 均值 µ1, µ2 已知时，方差比 σ2
2/σ

2
1 的检验方法
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2.5 极限分布为正态分布的检验

同理，见教材《数理统计》（第三版）P 233− 238。

(1) Behrens-Fisher 检验问题的近似方法

(2) 比率 p 的大样本检验方法

(3) Poisson 分布参数的大样本检验

(4) 两个比率差的大样本检验问题

2.6 其他检验

例 2.1 (比率 p精确检验方法) 设 X1, · · · , Xn ∈ {0, 1}服从 Bernoulli分布 B(1, p)，于是容易得到

T = T (X) =
∑n

i=1 Xi ∼ B(n, p)。下面对 p构造水平为 α的随机化假设检验

H0 : p ≤ p0 ↔ H1 : p > p0

解答 构造随机化检验函数 φ 为

φ(X) =


1, T > c

r, T = c

0, T < c

先考虑边界情况，即 p = p0 假设下的效用，即

Ep0 [φ(X)] = 1× Pp0(T > c) + r × Pp0(T = c)

=
∑n

k=c+1

(
n

k

)
pk0(1− p0)

n−k︸ ︷︷ ︸
Ac+1(p0)

+ r ·
(
n

c

)
pc0(1− p0)

n−c︸ ︷︷ ︸
Ac(p0)−Ac+1(p0)

= Ac+1(p0) + [Ac(p0)− Ac+1(p0)] · r

那么，由概率的左连续性，必 ∃ c 使得 Pp0(T > c) ≤ α ≤ Pp0(T ≥ c)，即

Ep0 [φ(X)]
∣∣
r=0

≤ α ≤ Ep0 [φ(X)]
∣∣
r=1

那么，r ∈ [0, 1] 有解

r =
α− Ac+1(p0)

Ac(p0)− Ac+1(p0)
∈ [0, 1]

使得 Ep0 [φ(X)] = α。于是检验 φ(X) 确定，下面证其对于整个 H0 : p ≤ p0 都满足

EΘ0 [φ(X)] = Ep≤p0 [φ(X)] ≤ α
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先证明一个引理（HW 2 已证）：下面的等式恒成立∑n

k=c

(
n

k

)
pk(1− p)n−k = c

(
n

c

)ˆ p

0

tc−1(1− t)n−c dt ∀ 0 ≤ t ≤ p ≤ 1

由积分内函数非负，故上述积分随 p 增大而不减。观察恒等式左式与 Ac(p) 可知 Ac(p) 是关于 p

不减的，即 Ac(p) ≤ Ac(p0) 当 p ≤ p0 时成立。于是对上面求得的 r ∈ [0, 1] 有

Ep≤p0 [φ(X)] = Ac+1(p) + [Ac(p)− Ac+1(p)] · r = Ac+1(p) · (1− r) + Ac(p) · r

≤ Ac+1(p0) · (1− r) + Ac(p0) · r = Ac+1(p0) + [Ac(p0)− Ac+1(p0)] · r

= Ep0 [φ(X)] = α

综上可知，如下的随机化检验

φ(X) =


1, T > c

α− Ac+1(p0)

Ac(p0)− Ac+1(p0)
, T = c

0, T < c

满足 EΘ0 [φ(X)] ≤ α，即是水平为 α 的检验。这里的 c 是 Pp0(T > c) ≤ α ≤ Pp0(T ≥ c) 的解。

3 似然比检验

3.1 似然比检验的定义

定义 3.1 设样本X 有概率函数 f(X; θ)，θ ∈ Θ，而 Θ0为参数空间 Θ的真子集，考虑检验问题

H0 : θ ∈ Θ0 ↔ H1 : θ ∈ Θ1

则统计量

λ(X) =
supθ∈Θ f(X; θ)

supθ∈Θ0
f(X; θ)

称为关于该检验问题的似然比。而由下述定义的检验函数

φ(X) =


1, λ(X) > c

r, λ(X) = c

0, λ(X) < c

称为检验问题的一个似然比检验（likelihood ratio test, LRT）。其中 c, r (0 ≤ r ≤ 1)为待定系数。

若样本分布为连续分布时，令 r = 0，即

φ(X) =

1, λ(X) > c

0, λ(X) ≤ c

而系数 c, r的选择是要使检验具有给定的水平 α。
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3.2 若干示例

1. 正态分布总体

例 3.1 设X = (X1, · · · , Xn)是从正态分布族F = {N(µ, σ2) : µ ∈ R, σ2 ∈ R+}中抽取的随机样
本，求下列检验问题的水平为 α的似然比检验

H0 : µ = µ0 ↔ H1 : µ ̸= µ0

解答 设 θ = (µ, σ2)，则 θ 的似然函数为

f(X;θ) = (2πσ2)−
n
2 exp

{
− 1

2σ2

n∑
i=1

(Xi − µ)2

}
在这里，参数空间为

Θ = {θ = (µ, σ2) : µ ∈ R, σ2 ∈ R+}

零假设 H0 对应的 Θ 的子集为

Θ0 = {θ = (µ, σ2) : µ = µ0, σ
2 ∈ R+}

在 Θ 上，µ 和 σ2 的极大似然估计（MLE）分别为

µ̂ = X̄ σ̂2 =
1

n

n∑
i=1

(Xi − X̄)2

在 Θ0 上，σ2 的 MLE 为

σ̃2 =
1

n

n∑
i=1

(Xi − µ0)
2

故有

sup
θ∈Θ

f(X;θ) = f(X; µ̂, σ̂2) =

(
2πe

n

)−n/2
(

n∑
i=1

(Xi − X̄)2

)−n/2

sup
θ∈Θ0

f(X;θ) = f(X;µ0, σ̃
2) =

(
2πe

n

)−n/2
(

n∑
i=1

(Xi − µ0)
2

)−n/2

从而有

λ(X) =

[∑n
i=1(Xi − X̄)2∑n
i=1(Xi − µ0)2

]−n/2

=

[
1 +

n(X̄ − µ0)
2∑n

i=1(Xi − X̄)2

]n/2
=

[
1 +

1

n− 1
· n(X̄ − µ0)

2

1
n−1

∑n
i=1(Xi − X̄)2

]n/2

:=

(
1 +

1

n− 1
[T (X)]2

)n/2

由此，λ(X) 为 |T (X)| 的严格增函数，故检验的拒绝域 D = {X : λ(X) > c′} = {X : |T | > c}，
其中

T |µ = µ0 =

√
n(X̄ − µ0)

S

∣∣∣∣µ = µ0 ∼ tn−1
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故

PH0(|T | > c) = α ⇒ c = tn−1(α/2)

从而有

φ(X) =

1, |T (X)| > tn−1(α/2)

0, |T (X)| ≤ tn−1(α/2)

是检验的一个水平为 α 的似然比检验。

例 3.2 设X = (X1, · · · , Xn)是从正态分布族F = {N(µ, σ2) : µ ∈ R, σ2 ∈ R+}中抽取的随机样
本，求下列检验问题的水平为 α的似然比检验

H0 : µ ≤ µ0 ↔ H1 : µ > µ0

解答 此时的似然函数 LΘ(X) = supθ∈Θ f(X;θ) 和 Θ 与之前相同。但

Θ0 = {θ = (µ, σ2) : µ ≤ µ0, σ
2 > 0}

故在 Θ0 的似然函数为

LΘ0(X) = sup
θ∈Θ0

f(X;θ) = sup
θ∈Θ0

(2πσ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(Xi − µ)2

}

= sup
θ∈Θ0

(2πσ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(Xi − X̄)2 − n(X̄ − µ)2

2σ2

}

其增减性取决于函数 g(µ) = −(X̄ − µ)2/σ2，当 σ2 固定时。若 µ ≤ X̄，易知 g(µ) 关于 µ 单增，

否则单减。因此

1. 当 X̄ > µ0 时，若 H0 : µ ≤ µ0 成立，有 g(µ) 在 µ = µ0 取到最大。

2. 当 X̄ ≤ µ0 时，若 H0 : µ ≤ µ0 成立，有 g(µ) 在 µ = X̄ 取到最大。

那么，对应 Θ0 的极大似然函数为

LΘ0(X) =


LΘ(X), X̄ ≤ µ0(
2πe

n

)−n/2
(

n∑
i=1

(Xi − µ0)
2

)−n/2

, X̄ > µ0

于是似然比为

λ(X) =


1, X̄ ≤ µ0(

n∑
i=1

(Xi − X̄)2

/
n∑

i=1

(Xi − µ0)
2

)−n/2

=

(
1 +

T 2

n− 1

)n/2

, X̄ > µ0

其中 T = T (X) =
√
n(X̄ − µ0)/S。如此，λ(X) 是关于 T (X) 的单增函数。于是拒绝域为

D = {X : λ(X) > c′} = {X : T = T (X) > c}
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边界情况，即 µ = µ0 时，有 T ∼ tn−1。即有 P(T > tn−1(α)|µ = µ0) = α，我们取 c = tn−1(α) 为

tn−1 分布的上 α 分位数点，即取检验 φ 为

φ(X) =

1, λ(X) > c′

0, λ(X) ≤ c′
⇒ φ(X) =

1, T > tn−1(α)

0, T ≤ tn−1(α)

下面证明：对完整的H0 : µ ≤ µ0，也有功效 βφ(µ) = EΘ0 [φ(X)] ≤ α。注意到，对H0 : µ ≤ µ0 有

βφ(µ) = EΘ0 [φ(X)] = Pµ≤µ0

(
T =

√
n(X̄ − µ0)

S
> tn−1(α)

)
= Pµ≤µ0

(√
n(X̄ − µ)

S
> tn−1(α) +

√
n(µ0 − µ)

S

)
≤ Pµ≤µ0

(√
n(X̄ − µ)

S
> tn−1(α)

)
= α

故 φ(X) 是检验问题 H0 : µ ≤ µ0 ↔ H1 : µ > µ0 水平为 α 的似然比检验。

例 3.3 设X = (X1, · · · , Xn)是从正态分布族F = {N(µ, σ2) : µ ∈ R, σ2 ∈ R+}中抽取的随机样
本，求下列检验问题的水平为 α的似然比检验

H0 : σ
2 = σ2

0 ↔ H1 : σ
2 ̸= σ2

0

解答 此时的似然函数 LΘ(X) = supθ∈Θ f(X;θ) 和 Θ 与之前相同。但

Θ0 = {θ = (µ, σ2) : µ ∈ R, σ2 = σ2
0}

故在 Θ0 的似然函数为

LΘ0(X) = (2πσ2
0)

−n/2 exp

{
− 1

2σ2
0

n∑
i=1

(Xi − X̄)2

}
因此，有似然比为

λ(X) =
( e
n

)−n/2
(

1

σ2
0

n∑
i=1

(Xi − X̄)2

)−n/2

exp

{
1

2σ2
0

n∑
i=1

(Xi − X̄)2

}
记 ξ(X) =

∑n
i=1(Xi − X̄)2 > 0/σ2

0，于是有 λ(X) ∝ g(ξ) = ξ−n/2eξ/2。容易得到 g(ξ) 关于 ξ 先降

后升，于是拒绝域为

D = {X : λ(X) > c′′} = {X : g(ξ) > c′} = {X : (ξ < k1) ∪ (ξ > k2)}

注意到在 H0 : σ
2 = σ2

0 条件下，ξ ∼ χ2
n−1，于是有

P(ξ < χ2
n−1(1− α/2)|H0) =

α

2
P(ξ > χ2

n−1(α/2)|H0) =
α

2

即取 k1 = χ2
n−1(1− α/2), k2 = χ2

n−1(α/2) 分别为 χ2
n−1 分布的上 1− α/2 和 α/2 分位数点。如此

我们得到检验

φ(X) =

1, [ξ < χ2
n−1(1− α/2)] ∪ [ξ > χ2

n−1(α/2)]

0, χ2
n−1(1− α/2) ≤ ξ ≤ χ2

n−1(α/2)

是原问题的水平为 α 的似然比检验。
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2. 非正态分布总体

例 3.4 (均匀分布) 设X = (X1, · · · , Xn)是从均匀分布族F = {U(0, θ) : θ > 0}中抽取的随机样
本，求下列检验问题的水平为 α的似然比检验

H0 : θ ≤ θ0 ↔ H1 : θ > θ0

解答 此时的似然函数为

f(X; θ) = θ−n · I(0 < X(n) < θ)

参数空间 Θ = (0,∞), Θ0 = (0, θ0]。由于 X(n) = max{X1, · · · , Xn} 为 θ 在 Θ 的极大似然估计，

故有

LΘ(X) = sup
θ∈Θ

f(X; θ) = (X(n))
−n

又 θ−n 随 θ 增大而减小，也容易得

LΘ0(X) = sup
θ∈Θ0

f(X; θ) =

LΘ(X), 0 < X(n) ≤ θ0

0, X(n) > θ0

故有似然比为

λ(X) =
LΘ(X)

LΘ0(X)
=

1, 0 < X(n) ≤ θ0

∞, X(n) > θ0

为 T (X) = X(n) 的不减函数，故检验的拒绝域形如

D = {X : λ(X) > c′} = {X : X(n) > c}

由 T = T (X) = X(n) 的密度函数为 g(t) = (ntn−1/θn) · I(0,θ)(t)，故考虑边界情况 θ = θ0

α = P(X(n) > c|θ = θ0) =

ˆ θ0

c

ntn−1

θn0
dt = 1−

(
c

θ0

)n

解得 c = θ0
n
√
1− α，故此时的检验函数为

φ(X) =

1, X(n) > θ0
n
√
1− α

0, X(n) ≤ θ0
n
√
1− α

检查功效函数

βφ(θ) = PΘ0(X(n) > θ0
n
√
1− α) = P(X(n) > θ0

n
√
1− α|θ ≤ θ0) =

ˆ θ

θ0
n√1−α

ntn−1

θn
dt

= θ−n[θn − θn0 (1− α)] = 1− (1− α)

(
θ0
θ

)n

是关于 θ 的单增函数，故有

βφ(θ) ≤ βφ(θ0) = 1− (1− α) = α H0 : θ ≤ θ0

综上，φ 是原问题水平为 α 的似然比检验。
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例 3.5 (指数分布) 设X = (X1, · · · , Xn)是从指数分布族

f(X; θ) =
1

2
exp

{
−(X − θ)

2

}
· I(X ≥ θ)

中抽取的随机样本，求下列检验问题的水平为 α的似然比检验

H0 : θ = θ0 ↔ H1 : θ ̸= θ0

解答 此时，似然函数为

f(X; θ) = 2−n exp

{
−1

2

n∑
i=1

Xi +
nθ

2

}
· I(X(1) ≥ θ)

关于 θ（θ ≤ X(1)）单增，故有 Θ 下的极大似然为

LΘ(X) = f(X;X(1)) = 2−n exp

{
−1

2

n∑
i=1

Xi +
nX(1)

2

}

而 Θ0 = {θ : θ = θ0} 的似然函数为

LΘ(X) = f(X; θ0) = 2−n exp

{
−1

2

n∑
i=1

Xi +
nθ0
2

}
· I(X(1) ≥ θ0)

于是，似然比为

λ(X) =

exp
{n
2
(X(1) − θ0)

}
, X(1) ≥ θ0

∞, X(1) < θ0

注意到，在 X(1) < θ0 时，λ(X) = ∞ 一定拒绝；而在 X(1) ≥ θ0 时，λ(X) 关于 X(1) 单增。于是

拒绝域形如

D = {X : λ(X) > c′} = {X : (X(1) < θ0) ∪ (X(1) > c)}

那么在 H0 : θ = θ0 下已知 X(1) 的概率密度函数，则 X(1) > c 的概率为

P(X(1) > c|θ = θ0) =

ˆ ∞

c

n

2
exp

{
−n(t− θ0)

2

}
dt = exp

{
−n(c− θ0)

2

}
令其等于 α，则有 c = θ0 − (2 logα)/n。那么，构造检验函数

φ(X) =


1, (X(1) < θ0) ∪

(
X(1) > θ0 −

2

n
logα

)
0, o.w.

于是，在 H0 : θ = θ0 下的效用为

βφ(θ) = P(X(1) < θ0|θ = θ0) + P
(
X(1) > θ0 −

2

n
logα

∣∣∣∣ θ = θ0

)
≤ P

(
X(1) > θ0 −

2

n
logα

∣∣∣∣ θ = θ0

)
= α

综上，φ 是原问题水平为 α 的似然比检验。
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3.3 似然比的渐近分布

定理 3.1 (Wilks定理) 设X = (X1, · · · , Xn)是从分布 F = {f(X;θ) : θ > Θ}中抽取的随机样
本，其中 θ为参数，总体密度函数 f 满足一定的正则条件。则对检验问题

H0 : θ ∈ Θ0 ↔ H1 : θ ∈ Θ1

在零假设 H0 : θ ∈ Θ0成立下，当样本大小 n → ∞时有

2 log λ(X)
L−→ χ2

d

其中自由度

d = dimΘ− dimΘ0 > 0

例 3.6 设样本Xi = (Xi1, · · · , Xini
)为从正态总体 N(µi, σ

2
i )（i = 1, · · · ,m）中抽取的简单随机

样本，且全部独立。检验水平为 α的问题

H0 : σ
2
1 = · · · = σ2

m ↔ H1 : σ
2
1, · · · , σ2

m不完全相同

解答 设 θ = (µ1, · · · , µm; σ
2
1, · · · , σ2

m) ，易见 θ 的似然函数为

L(θ;X) =
m∏
i=1

[
(2πσ2

i )
−ni/2 exp

{
− 1

2σ2
i

ni∑
j=1

(Xij − µi)
2

}]

=
m∏
i=1

[
(2πσ2

i )
−ni/2 exp

{
− 1

2σ2
i

ni∑
j=1

[(Xij − X̄i)
2 + (X̄i − µi)

2]

}]

其中参数空间 Θ = {θ : µi ∈ R, σ2
i > 0} ，其维数为 dimΘ = 2m。零假设对应的 Θ0 = {θ : µi ∈

R, σ2
i = σ2 > 0} ，其维数为 dimΘ0 = m+ 1。记

X̄i =
1

ni

ni∑
j=1

Xij S2
i =

1

ni

ni∑
j=1

(Xij − X̄i)
2 S2 =

1

n

m∑
i=1

niS
2
i

此处 n =
∑m

i=1 ni。容易得到 µi 和 σ2
i 在 Θ 下的 MLE 为 µ̂i = X̄i, σ̂

2
i = S2

i ，故极大似然函数为

LΘ(X) = sup
θ∈Θ

L(θ;X) = (2πe)−n/2

m∏
i=1

S−ni
i

而当 H0 : σ
2
i = σ2 时，σ2 的 MLE 为 σ̂2 = S2，故极大似然函数为

LΘ0(X) = sup
θ∈Θ0

L(θ;X) = (2πe)−n/2S−n

于是，似然比为

λ(X) =
LΘ(X)

LΘ0(X)
=

Sn∏m
i=1 S

ni
i

取对数，得到

Tn(X) ≜ 2 log λ(X) = n log S2 −
m∑
i=1

ni log S
2
i

14



由 Wilks 定理 3.1 可知，当 H0 成立，且 min{n1, · · · , nm} → ∞ 时，有

Tn(X)
L−→ χ2

d d = dimΘ− dimΘ0 = m− 1

由此得到大样本检验有水平近似为 α 的拒绝域为

D = {X : Tn(X) > χ2
m−1(α)}

4 一致最优检验 UMPT

4.1 UMPT定义

设有分布族 {f(x; θ) : θ ∈ Θ}，其中 Θ 为参数空间。样本 X = (X1, · · · , Xn) 为从上述分布

族中抽取的简单样本，则参数 θ 的假设检验问题可表示为

H0 : θ ∈ Θ0 ↔ H1 : θ ∈ Θ1

其中 Θ0 为参数空间 Θ 的非空真子集，而 Θ1 = Θ−Θ0。

定义 4.1 (一致最优检验 UMPT) 针对上面的假设检验问题，令 0 < α < 1，记 Φα为这个检验问

题一切水平为 α的检验的集合。即

Φα = {φ : βφ(θ|Θ0) = EΘ0 [φ(X)] ≤ α}

若 φ ∈ Φα，且对任何检验 φ1 ∈ Φα，都有

βφ(θ|Θ1) ≥ βφ1(θ|Θ1) ∀ θ ∈ Θ1

则称 φ为检验问题的一个水平为 α的一致最优检验（uniformly most powerful test, UMPT）。

注 一致最优检验就是控制犯第 I类错误概率不超过 α的条件下，使得犯第 II类错误概率达到
最小。即

控制 P(type I error) ≤ α 最小化min
φ

P(type II error)

其中

P(type I error) = βφ(θ|Θ0) = EΘ0 [φ(X)]

P(type II error) = 1− βφ(θ|Θ1) = 1− EΘ1 [φ(X)]

不过，UMPT 的存在一般是例外而不常见的。理由如下: 若Θ1 包舍不止一个点，当在其中取

两个不同点 θ1, θ2 ∈ Θ1 时，为使 βφ(θ1|Θ1)达到最大的那种检验 φ，不见得同时也能使 βφ(θ2|Θ1)

达到最大。

在 Θ0 和 Θ1 都只包含一个点时，一般说来 UMPT 存在。这就是下面 Neyman-Pearson 基本

引理（简称 NP 引理）的内容。
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4.2 Neyman-Pearson引理

定理 4.1 (Neyman-Pearson引理) 设样本X = (X1, · · · , Xn)的概率函数为 f(X; θ)，参数 θ只有

两个可能的值 θ0和 θ1，考虑下列检验问题

H0 : θ = θ0 ↔ H1 : θ = θ1

则对任给的 0 < α < 1有

1. 存在性。对检验问题，必存在一个检验函数 φ(X)及非负常数 c和 0 ≤ r ≤ 1，满足条件

(a).

φ(X) =


1, f(X; θ1)/f(X; θ0) > c

r, f(X; θ1)/f(X; θ0) = c

0, f(X; θ1)/f(X; θ0) < c

(1)

(b).
Eθ0 [φ(X)] = α (2)

2. 一致最优性（或充分性）。任何满足式 1和 2的检验 φ(X)是检验问题的 UMPT。
3. 唯一性（或必要性）。若 φ∗(X) 也是检验问题的 UMPT 则必有 φ∗(X)

a.e.
== φ(X) 在 X ∈

S+ ∪ S−几乎处处（其中 S+, S−定义见后）。又若 Eθ1 [φ
∗(X)] < 1，则有 Eθ0 [φ

∗(X)] = α。

证明 (A) 先证明存在性。记随机变量 f(X; θ1)/f(X; θ0) 的分布函数为

G(y) = Pθ0

(
f(X; θ1)

f(X; θ0)
≤ y

)
0 ≤ y < ∞

则 G(y) 具有性质：单调非降，右连续，且 limy→∞ G(y) = 1, G(0) = 0，则存在 0 < c < ∞ 使得

G(c− 0) ≤ 1− α ≤ G(c)。

1. 若 G(c) = 1− α，则取 r = 0，这时检验函数 φ 满足

Eθ0 [φ(X)] = 1× Pθ0

(
f(X; θ1)

f(X; θ0)
> c

)
+ 0× Pθ0

(
f(X; θ1)

f(X; θ0)
= c

)
= 1−G(c) = α

2. 若 G(c− 0) = 1− α，则取 r = 1，这时检验函数 φ 满足

Eθ0 [φ(X)] = 1× Pθ0

(
f(X; θ1)

f(X; θ0)
> c

)
+ 1× Pθ0

(
f(X; θ1)

f(X; θ0)
= c

)
= 1−G(c) + [G(c)−G(c− 0)] = 1−G(c− 0) = α

3. 若 G(c− 0) < 1− α < G(c)，则取

r =
G(c)− (1− α)

G(c)−G(c− 0)
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这时检验函数 φ 满足

Eθ0 [φ(X)] = 1× Pθ0

(
f(X; θ1)

f(X; θ0)
> c

)
+ r × Pθ0

(
f(X; θ1)

f(X; θ0)
= c

)
= 1−G(c) +

G(c)− (1− α)

G(c)−G(c− 0)
· [G(c)−G(c− 0)]

= 1−G(c) +G(c)− (1− α) = α

综上有，一定存在 φ(X) 和 c 使得 G(c− 0) ≤ 1− α ≤ G(c)，且存在 r 使得式 1 和 2 成立，存在

性证毕。

(B) 再证一致最优性（或充分性）。即证：满足式 1 和 2 的检验函数 φ(X) 是原检验问题的

UMPT。设 φ1(X) 为任一个水平为 α 的检验，只需证明：

Eθ1 [φ(X)] = βφ(θ|Θ1) ≥ βφ1(θ|Θ1) = Eθ1 [φ1(X)]

下面，定义样本空间 X 上的子集

S+ =

{
X : λ(X) :=

f(X; θ1)

f(X; θ0)
> c

}
= {X : f(X; θ1)− c · f(X; θ0) > 0}

S− =

{
X : λ(X) :=

f(X; θ1)

f(X; θ0)
< c

}
= {X : f(X; θ1)− c · f(X; θ0) < 0}

而剩余部分为 S0 = X − S+ ∪ S−。又注意到

1. 当X ∈ S+ 时，有 f(X; θ1)−c·f(X; θ0) > 0，其对应的φ(X) = 1，从而有φ(X)−φ1(X) ≥ 0，

故有

A(X) := [φ(X)− φ1(X)] · [f(X; θ1)− c · f(X; θ0)] ≥ 0

2. 当X ∈ S− 时，有 f(X; θ1)−c·f(X; θ0) < 0，其对应的φ(X) = 0，从而有φ(X)−φ1(X) ≤ 0，

故仍有 A(X) ≥ 0。

因此，对任意 X ∈ S+ ∪S− 上，必有 A(X) ≥ 0。而对于 X ∈ S0，即 f(X; θ1)− c · f(X; θ0) = 0

，则有 A(X) = 0。因此有积分
ˆ

X

A(X) dX =

ˆ
S+∪S−

A(X) dX =

ˆ
S+∪S−

[φ(X)− φ1(X)] · [f(X; θ1)− c · f(X; θ0)] dX ≥ 0

即

Eθ1 [φ(X)]− Eθ1 [φ1(X)] =

ˆ
X

φ(X)f(X; θ1) dX −
ˆ

X

φ1(X)f(X; θ1) dX

≥ c ·
[ˆ

X

φ(X)f(X; θ0) dX −
ˆ

X

φ1(X)f(X; θ0) dX

]
= c · {Eθ0 [φ(X)]− Eθ0 [φ1(X)]}

由 φ 满足式 2 而 φ1 水平为 α，即有

Eθ1 [φ(X)]− Eθ1 [φ1(X)] ≥ c · {Eθ0 [φ(X)]− Eθ0 [φ1(X)]} = c · {α− Eθ0 [φ1(X)]} ≥ 0
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于是，对任意水平为 α 的检验 φ1 都有 Θ1 下的效率 βφ(θ|Θ1) ≥ βφ1(θ|Θ1) 更优。那么 φ(X) 是

原问题水平为 α 的 UMPT。

(C) 最后证唯一性。即要证：对X ∈ S+∪S−，若φ∗ 也是检验问题的 UMPT，则必有φ∗ a.e.
== φ。

若 φ∗ 是 UMPT，则必有 Eθ1 [φ
∗(X)] ≥ Eθ1 [φ(X)] ；而 φ 也是 UMPT，则也有 Eθ1 [φ(X)] ≥

Eθ1 [φ
∗(X)] 。因此有 Eθ1 [φ

∗(X)] = Eθ1 [φ(X)]。

由 (B) 的推导，取 φ1 = φ∗，则有
ˆ

X

[φ(X)− φ∗(X)] · [f(X; θ1)− c · f(X; θ0)] dX

=

ˆ
S+∪S−

[φ(X)− φ∗(X)] · [f(X; θ1)− c · f(X; θ0)] dX ≥ 0

若上式不取等，则有

Eθ1 [φ(X)]− Eθ1 [φ1(X)] > c · {Eθ0 [φ(X)]− Eθ0 [φ1(X)]} ≥ 0

这与 Eθ1 [φ
∗(X)] = Eθ1 [φ(X)] 矛盾。于是有

ˆ
S+∪S−

[φ(X)− φ∗(X)] · [f(X; θ1)− c · f(X; θ0)] dX = 0

即

[φ(X)− φ∗(X)] · [f(X; θ1)− c · f(X; θ0)]
a.e.
== 0 X ∈ S+ ∪ S−

而在 S+ ∪ S− 上时，f(X; θ1)− c · f(X; θ0) ̸= 0，因而必有

φ(X)− φ∗(X)
a.e.
== 0 X ∈ S+ ∪ S−

即 φ∗(X)
a.e.
== φ(X)0, X ∈ S+ ∪ S−。

最后再证，若Eθ1 [φ
∗(X)] < 1，则有Eθ0 [φ

∗(X)] = α。由之前已证的Eθ1 [φ
∗(X)] = Eθ1 [φ(X)]，

且结合之前 (B) 的不等式，有

0 = Eθ1 [φ(X)]− Eθ1 [φ1(X)] ≥ c · {Eθ0 [φ(X)]− Eθ0 [φ1(X)]} ≥ 0

从而有 c · {Eθ0 [φ(X)]−Eθ0 [φ1(X)]} = c · {α−Eθ0 [φ1(X)]} = 0。若 c = 0，则 S+ = {X : λ(X) >

c = 0} = {X : f(X; θ1) > 0} = X ，而当 λ(X) > c 时 φ∗ = 1，由此推出

Eθ1 [φ
∗(X)] =

ˆ
X

φ∗(X)f(X; θ1) dX =

ˆ
S+

φ∗(X)f(X; θ1) dX =

ˆ
S+

1 · f(X; θ1) dX = 1

这与假设的 Eθ1 [φ
∗(X)] < 1 矛盾，因此 c ̸= 0。故由 α − Eθ0 [φ1(X)] 可知此时 Eθ0 [φ1(X)] = α。

综上，在 S+ ∪ S− 上唯一性证毕。

例 4.1 设X = (X1, · · · , Xn)是从正态分布 N(θ, 1)中抽取的随机样本，其中 θ为未知参数，求

下列检验问题

H0 : θ = 0 ↔ H1 : θ = θ1 (θ1 > 0)

的水平为 α的 UMPT，其中 θ1和 α给定。
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解答 由 NP 引理，先求 f0(X) 和 f1(X) 的表达式

f0(X) = (2π)−n/2 exp

{
−1

2

n∑
i=1

X2
i

}

f1(X) = (2π)−n/2 exp

{
−1

2

n∑
i=1

(Xi − θ1)
2

}

似然比可表示为

λ(X) =
f1(X)

f0(X)
= exp

{
−nθ21

2
+ nθ1X̄

}
显然当 θ1 > 0 时，λ(X) 为 X̄ 的严格增函数，故 UMPT 的拒绝域为

D = {X : λ(X) > c′} = {X :
√
nX̄ > c}

于是构造检验函数为

φ(X) =

1, λ(X) ≥ c′

0, λ(X) < c′
⇒ φ(X) =

1, U =
√
nX̄ ≥ c

0, U =
√
nX̄ < c

当 H0 : θ = 0 成立时，U =
√
nX̄ ∼ N(0, 1)，故有

E0[φ(X)] = P(
√
nX̄ > zα|H0) = α

其中 c = zα 为标准正态的上 α 分位数点。上面的 φ 满足式 1 和式 2，由 NP 引理 4.1 可知，φ 是

原问题 H0 : θ = 0 ↔ H1 : θ = θ1 的 UMPT。

特别地，这个 UMPT 不依赖于 θ1，即对任意 θ1 > 0 都是 UMPT，那么这个 φ 也是检验问题

H0 : θ = 0 ↔ H ′
1 : θ > 0

的 UMPT。

例 4.2 设X = (X1, · · · , Xn)是从 Bernoulli分布 B(1, p)中抽取的随机样本，其中 p为未知参数，

求下列检验问题

H0 : p = p0 ↔ H1 : p = p1 (p1 > p)

的水平为 α的 UMPT，其中 p1和 α给定。

解答 记 T = T (X) =
∑n

i=1 Xi，于是有 f0 和 f1 的表达式

f0(X) = pT0 (1− p0)
n−T

f1(X) = pT1 (1− p1)
n−T

于是，似然比为

λ(X) =
f1(X)

f0(X)
=

pT1 (1− p1)
n−T

pT0 (1− p0)n−T
=

(
1− p1
1− p0

)n(
p1(1− p0)

p0(1− p1)

)T
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由于 p1 > p0，所以 p1(1− p0)/p0(1− p1) > 1。故 λ 关于 T 严格单增。而由于 r.v. T (X) 服从离

散分布，故需要随机化。于是构造检验函数

φ(X) =


1, λ(X) > c′

r, λ(X) = c′

0, λ(X) < c′

⇒ φ(X) =


1, T (X) > c

r, T (X) = c

0, T (X) < c

当 H0 : p = p0 成立时，T 服从二项分布 B(n, p0)。当 α 给定时，c 由下列不等式确定

P(T ≥ c+ 1|p = p0) =
n∑

k=c+1

(
n

k

)
pk0(1− p0)

n−k ≤ α ≤
n∑

k=c

(
n

k

)
pk0(1− p0)

n−k = P(T ≥ c|p = p0)

对解出的 c，取

r =
α− P(T ≥ c+ 1|p = p0)

P(T = c|p = p0)
=

α−
∑n

k=c+1

(
n
k

)
pk0(1− p0)

n−k(
n
c

)
pc0(1− p0)n−c

如此，则有

Ep0 [φ(X)] = P(T > c|p = p0) + r · P(T = c|p = p0) = α

因此如此检验满足式 1 和式 2，由 NP 引理知，φ 是原检验问题水平为 α 的 UMPT。

特别地，上述检验 φ 与 p1 无关，故 UMPT 对任意 p1 > p0 均成立。即可拓展：检验 φ 也是

检验问题

H0 : p = p0 ↔ H1 : p > p0

的水平为 α 的 UMPT。

例 4.3 设X = (X1, · · · , Xn)是从均匀分布 U(0, θ)中抽取的随机样本，其中 θ > 0为未知参数，

求下列检验问题

H0 : θ = θ0 ↔ H1 : θ = θ1 (θ1 > θ0 > 0)

的水平为 α的 UMPT。

解答 (方法一：NP引理) 先求 f0 和 f1 的表达式

f0(X) = θ−n
0 · I(0 < X(n) < θ0)

f1(X) = θ−n
1 · I(0 < X(n) < θ1)

因为 θ1 > θ0，于是似然比为

λ(X) =
f1(X)

f0(X)
=


(
θ0
θ1

)n

, 0 < X(n) < θ0

∞, θ0 ≤ X(n) ≤ θ1

此处定义了 0/0 = ∞。注意到 λ(X) 只能取 2 个固定的值，且这两个值与样本 X 无关。那么构

造随机化检验函数

φ(X) =


1, λ(X) > c

r, λ(X) = c

0, λ(X) < c
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因为 λ 只有 2 个值，故 c 的取值有 4 种情况，分别为

c ∈ R =

(
−∞,

(
θ0
θ1

)n)
∪
{(

θ0
θ1

)n}
∪
((

θ0
θ1

)n

,∞
)
∪ {∞}

对这 5 种情况的 c，求解对应的 r，从而获得 φ。经推导，发现只有在 c = (θ0/θ1)
n 时存在解。此

时取 r = α，有

Eθ0 [φ(X)] = Pθ0

(
λ(X) >

(
θ0
θ1

)n)
+ r · Pθ0

(
λ(X) =

(
θ0
θ1

)n)
= r = α

此时，根据 λ(X) 和 X(n) 的关系，可求 φ 为

φ(X) =

1, θ0 ≤ X(n) ≤ θ1

α, 0 < X(n) < θ0

于是，检验 φ 满足式 1 和式 2，从而根据 NP 引理，φ 是原问题的水平为 α 的 UMPT。

解答 (方法二：UMPT定义) 思路：构造水平为 α 的检验函数 φ′，使得其在 H1 下的效用等于

UMPT φ 的效用，于是 φ′ 就也是 UMPT。

由似然比为

λ(X) =
f1(X)

f0(X)
=


(
θ0
θ1

)n

, 0 < X(n) < θ0

∞, X(n) ≥ θ0

可视为关于 T = T (X) = X(n) 不减函数（连续），于是构造检验函数

φ′(X) =

1, X(n) > c

0, X(n) ≤ c

容易得到 T = X(n) 的密度函数为

gθ(t) =
ntn−1

θn
· I(0,θ)(t)

于是令

Eθ0 [φ
′(X)] =

ˆ ∞

0

φ′(t)gθ(t) dt =

ˆ θ0

c

ntn−1

θn0
dt = 1− cn

θn0
= α

解出 c = θ0
n
√
1− α，此时

φ′(X) =

1, X(n) > θ0
n
√
1− α

0, X(n) ≤ θ0
n
√
1− α

也是水平为 α 的检验。下面证明：φ′ 在 H1 下的效用等于 UMPT φ 的效用。注意到 φ 的效用

βφ(θ|θ1) = Eθ1 [φ(X)] 为

Eθ1 [φ(X)] = 1 · Pθ1(θ0 ≤ X(n) ≤ θ1) + α · Pθ1(0 < X(n) < θ0)

=

ˆ θ1

θ0

ntn−1

θn−1
1

dt+ α ·
ˆ θ0

0

ntn−1

θn−1
1

dt

= 1−
(
θ0
θ1

)n

+ α

(
θ0
θ1

)n
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而 φ′ 的效用 βφ′(θ|θ1) = Eθ1 [φ
′(X)] 为

Eθ1 [φ
′(X)] = Pθ1(X(n) > θ0

n
√
1− α) =

ˆ θ1

θ0
n√1−α

ntn−1

θn−1
1

dt = 1− (1− α)

(
θ0
θ1

)n

于是 Eθ1 [φ
′(X)] = Eθ1 [φ(X)]。那么 φ′ 也是 UMPT。

注意到无论是 φ 还是 φ′，这两种形式的 UMPT 都与 θ1 无关。（θ0 ≤ X(n) ≤ θ1 可以视为

X(n) ≥ θ0。因为只要 X(n) 大于 θ0，那么 λ 和 φ, φ′ 的值都确定了）。于是 φ, φ′ 作为 UMPT 对

∀ θ1 > θ0 都成立。原问题拓展为

H0 : θ = θ0 ↔ H1 : θ > θ0

φ, φ′ 仍然是其的 UMPT。

注 上述三个例子，最终的 UMPT检验函数 φ(X)皆为充分统计量 T = T (X)的函数，下面给

出普适性结论。

定理 4.2 设X = (X1, · · · , Xn)是从分布族 F = {f(X; θ) : θ ∈ Θ}中抽取的随机样本，其中 Θ

为未知参数 θ的参数空间。记 T = T (X)为 θ的充分统计量，则由式 1和式 2定义的检验函数
φ(X)是充分统计量 T 的函数。即

(i) φ(X) =


1, f(X; θ1)/f(X; θ0) > c

r, f(X; θ1)/f(X; θ0) = c

0, f(X; θ1)/f(X; θ0) < c

(ii) Eθ0 [φ(X)] = α


⇒ φ(X) = Φ(T (X))

证明 由充分统计量 T 和因子分解定理知

f(X; θ) = g(T (X), θ)h(X)

那么似然比可写成

λ(X) =
f(X; θ1)

f(X; θ0)
=

g(T (X), θ1)h(X)

g(T (X), θ0)h(X)
=

g(T (X), θ1)

g(T (X), θ0)

即 λ(X) 完全由 T (X) 决定，故 φ(X) 自然是 T (X) 的函数。

推论 1 设 φ是检验问题

H0 : θ = θ0 ↔ H1 : θ = θ1

的水平为 α的 UMPT，则必有 βφ(θ1) ≥ α。特别地，若 0 < α < 1而 f(X; θ0) ̸= f(X; θ1)，则

βφ(θ1) > α。

证明 设 Φα 代表上述问题水平为 α 的检验的集合。构造上述问题的一个检验 φ1(X) ≡ α，于是

有 βφ1(θ0) = βφ1(θ1) = α，那么 φ1 是上述问题水平为 α 的检验，即 φ1 ∈ Φα。又因为 φ(X) 是

Φα 中的 UMPT，即有 βφ(θ1) ≥ βφ1(θ1) = α ，证毕。
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（反证法）假设 f(X; θ0) ̸= f(X; θ1)，但仍有 βφ(θ1) = α ∈ (0, 1)。那么就有 φ1 的效用

βφ1(θ1) = βφ(θ1) = α，说明φ1 也是原问题的 UMPT。根据 NP 引理 4.1 的存在性可知，存在 UMPT
φ∗ 满足形式 1，又由 NP 引理 4.1 的唯一性可知，对X ∈ S+∪S−，即 f(X; θ1)/f(X; θ0) ̸= c，都有

φ∗(X)
a.e.
== φ1(X) ≡ α ∈ (0, 1)。而在X ∈ S+∪S− 上，φ∗ 只能为 1或 0，这与φ∗(X)

a.e.
== α ∈ (0, 1)

矛盾。于是此时只能是 βφ(θ1) > α，证毕。

4.3 Neyman-Pearson引理的逆定理

Neyman-Pearson 引理的逆定理：即为 NP 引理 4.1 的唯一性。需要注意的是，唯一性只在

X ∈ S+ ∪ S− 上以概率为 1 满足（即 a.s. P），此时检验函数 φ(X) 是非随机设计（即不考虑 = c

的情形）。

定理 4.3 (Neyman-Pearson引理的逆定理) 设 φ是检验问题

H0 : θ = θ0 ↔ H1 : θ = θ1

的水平为 α的 UMPT，则有

1. 必存在 c ≥ 0使得在样本空间X 上以概率为 1成立：

φ(X)
a.e.
==

1, f(X; θ1)/f(X; θ0) > c

0, f(X; θ1)/f(X; θ0) < c
∀ X ∈ X

或者在 S+ ∪ S− = {X : f(X; θ1)/f(X; θ0) ≠ c}样本子空间上成立：

φ(X) =

1, f(X; θ1)/f(X; θ0) > c

0, f(X; θ1)/f(X; θ0) < c
∀ X ∈ S+ ∪ S−

2. 若 βφ(θ1) < 1则 βφ(θ0) = α，即

Eθ1 [φ(X)] < 1 ⇒ Eθ0 [φ(X)] = α

证明 证明见 NP 引理 4.1 的唯一性证明。

4.4 单调似然比分布族MLR

在之前的问题中，Neyman-Pearson 引理解决了 H0, H1 都是单点的假设检验问题的 UMPT；

而在 UMPT 与 H1 的单点无关时，拓展到了 H0 是单点，而 H1 是复合的假设检验问题上。下面

讨论的是，如何拓展到更一般情况的假设检验问题

H0 : θ ∈ Θ0 ↔ H1 : θ ∈ Θ1

寻找这类检验问题的 UMPT 的一般想法是
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1. 挑选 θ0 ∈ Θ0 尽可能与 Θ1 接近。挑选 θ1 ∈ Θ1，针对

H ′
0 : θ = θ0 ↔ H ′

1 : θ = θ1

结合 NP 引理 4.1，构造满足式 1 和式 2 的 UMPT 记作 φθ1。

2. 若 φθ1 与 θ1 无关，即 ∀ θ1 ∈ Θ1 均有 φθ1 = φ 仍然是 H ′
0 ↔ H ′

1 的 UMPT。则可拓展到问题

H ′
0 : θ = θ0 ↔ H1 : θ ∈ Θ1

的 UMPT 是 φ。

3. 若当前检验对 ∀ θ ∈ Θ0 均有检验水平 α，即 βφ(θ|Θ0) = EΘ0 [φ(X)] ≤ α，那么可以拓展到

一般问题

H0 : θ ∈ Θ0 ↔ H1 : θ ∈ Θ1

的 UMPT 仍然是 φ。

但是，上述方法一般是难以成功的。一般只有满足下列条件才可行：(1) 参数空间为一维欧

氏空间 Θ ⊆ R；(2) 假设检验是单边的；(3) 样本分布满足一定条件。

定义 4.2 (单调似然比分布族MLR) 设X 服从单参数分布族F = {f(X; θ) : θ ∈ Θ}，参数空间
Θ ⊆ R。若对参数空间中任意两个参数 θ0, θ1 ∈ Θ有

1. 当 θ0 ̸= θ1时，事件 {f(X; θ0) ̸= f(X; θ1)}的概率大于 0。

P(f(X; θ0) ̸= f(X; θ1)|θ0 ̸= θ1) > 0 ∀ X ∈ X

2. 当 θ1 > θ0 时，存在统计量 T (X) 使得似然比 f(X; θ1)/f(X; θ0) 作为 X 的函数只依赖于

T (X)，且是 T (X)的非降（或非增）函数。

λ(X) =
f(X; θ1)

f(X; θ0)
= h[T (X)] 关于 T (X)单调

则称该分布族F 关于统计量 T = T (X)为单调非降（或非增）似然比分布族，简称单调似

然比分布族（monotone likelihood ratio family, MLR）。

对于单调似然比分布族，其单边检验可以由如下结论给出。

定理 4.4 (单调似然比分布族MLR的单边检验) 针对单调似然比分布族F，其样本为X，统计

量为 T (X)。考虑水平为 α ∈ (0, 1)的单边检验问题：

H0 : θ ≤ θ0 ↔ H1 : θ > θ0

有如下结论

1. 存在检验函数

φ∗(X) =


1, T (X) > k

r, T (X) = k

0, T (X) < k

(3)

其中 k和 r ∈ [0, 1]满足条件

Eθ0 [φ
∗(X)] = Pθ0(T (X) > k) + r · Pθ0(T (X) = k) = α (4)
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2. 满足上面两式（式 3和式 4）的检验 φ∗(X)，都有 φ∗的功效函数 βφ∗(θ)关于 θ ∈ Θ是不减

的。

3. 满足上面两式（式 3和式 4）的检验 φ∗(X)，是原问题的水平为 α的 UMPT。

证明 (1) 类似 NP 引理 4.1 的证明，对给定 α ∈ (0, 1)，存在 k ∈ R 使得

Pθ0(T (X) < k) ≤ 1− α ≤ Pθ0(T (X) ≤ k)

若 Pθ0(T (X) = k) = 0，则取 r = 1；若 Pθ0(T (X) = k) > 0，则取

r =
α− Pθ0(T (X) > k)

Pθ0(T (X) = k)

如此选取 k, r，总能保证形如式 3 的检验 φ∗(X) 满足式 4。

(2) 任取 θ1 > θ0，考虑单点检验问题

H ′
0 : θ = θ0 ↔ H ′

1 : θ = θ1

根据 NP 引理 4.1，检验问题 H ′
0 ↔ H ′

1 的 UMPT 检验函数 φ(X) 形如

φ(X) =


1, f(X; θ1)/f(X; θ0) > c

r, f(X; θ1)/f(X; θ0) = c

0, f(X; θ1)/f(X; θ0) < c

其中 c 满足 Eθ0 [φ(X)] = α。

由样本分布族关于统计量 T 具有单调非降似然比，根据定义 4.2 有

λ(X) =
f(X; θ1)

f(X; θ0)
= h[T (X)]

若 h[T (X)] 关于 T 严格单增，则 NP 引理构造的检验函数 φ 和依赖统计量构造的检验函数 φ∗ 是

等价形式。若 h[T (X)] 关于 T 单调非降不严格，那么我们记 c = λ(X)|T (X)=k = h(k)，则 c > 0。

那么 φ 和 φ∗ 的关系为

{X : T (X) > k} ⊇ {X : h[T (X)] > h(k)} = {X : λ(X) > c} ≜ S+

其中 ⊇ 是因为 h[T (X)] 关于 T 单调不严格。同理也有

{X : T (X) < k} ⊇ {X : h[T (X)] < h(k)} = {X : λ(X) < c} ≜ S−

综合 h[T (X)] 的两种情况可知，无论严不严格，都有在 X ∈ S+ ∪ S− 上 φ(X) 和 φ∗(X) 取相同

的值。根据 NP 引理 4.1 的唯一性可知，φ∗ 也是问题 H ′
0 ↔ H ′

1 的 UMPT。

特别地，注意到 φ∗ 检验与 ∀ θ1 ∈ Θ1 无关，故 φ∗ 也是问题

H ′
0 : θ = θ0 ↔ H1 : θ > θ0
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的水平为 α 的 UMPT。

下面证明 βφ∗(θ), θ ∈ Θ 的非降性。即要证明：∀ θ1 > θ0，都有 βφ∗(θ1) ≥ βφ∗(θ0)。因为

φ∗(X) 是 H ′
0 ↔ H ′

1 的 UMPT，根据推论 1 可知

βφ∗(θ1) ≥ α = Eθ0 [φ
∗(X)] = βφ∗(θ0) ∀ θ1 > θ0

如此证明了 βφ∗(θ), θ ∈ Θ 的非降性。

(3) 最后证明这样的 φ∗ 是检验问题

H0 : θ ≤ θ0 ↔ H1 : θ > θ0

的水平为 α 的 UMPT。由于已经得到 φ∗ 是 H ′
0 ↔ H1 的 UMPT，此时拓展 H0，只需证明 φ∗ 针

对 H0 ↔ H1 是水平为 α 的即可。由 (2) 知 βφ∗(θ) 为 θ 的非降函数，故

βφ∗(θ) ≤ βφ∗(θ0) = α ∀ θ ≤ θ0

其中 θ ≤ θ0 等价于H0 条件。因此 φ∗ 拓展到问题H0 ↔ H1 上，即为此问题的水平为 α的 UMPT，

证毕。

检验问题取反，类似地有如下结论。

定理 4.5 (单调似然比分布族MLR的单边检验) 针对单调似然比分布族F，其样本为X，统计

量为 T (X)。考虑水平为 α ∈ (0, 1)的单边检验问题：

H0 : θ ≥ θ0 ↔ H1 : θ < θ0

有如下结论

1. 存在检验函数

φ∗(X) =


1, T (X) < k

r, T (X) = k

0, T (X) > k

(5)

其中 k和 r ∈ [0, 1]满足条件

Eθ0 [φ
∗(X)] = Pθ0(T (X) < k) + r · Pθ0(T (X) = k) = α (6)

2. 满足上面两式（式 5和式 6）的检验 φ∗(X)，都有 φ∗的功效函数 βφ∗(θ)关于 θ ∈ Θ是不增

的。

3. 满足上面两式（式 5和式 6）的检验 φ∗(X)，是原问题的水平为 α的 UMPT。

考虑特定的分布族，例如指数族，推导其单边检验问题。

推论 2 (指数族的单边检验) 设样本X = (X1, · · · , Xn)的分布族为下列单参数指数族：

f(X; θ) = c(θ) exp{Q(θ)T (X)}h(X) θ ∈ Θ
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其中 c(θ) > 0, h(X) > 0，而 θ ∈ Θ ⊆ R为参数空间。若 Q(θ)在 Θ上严格单调递增，则对 Θ的

任何内点 θ0 ∈ Θ，求 θ的单边检验问题。以如下问题为例

H0 : θ ≤ θ0 ↔ H1 : θ > θ0

其 UMPT存在，且检验函数为

φ(X) =


1, T (X) > c

r, T (X) = c

0, T (X) < c

其中 c和 r ∈ [0, 1]满足条件

Eθ0 [φ(X)] = Pθ0(T (X) > c) + r · Pθ0(T (X) = c) = α
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