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1 区间估计

定义 1.1 (区间估计) 设有一个参数分布族 F = {f(x; θ) : θ ∈ Θ}，g(θ)是定义在参数空间 Θ上

的一个已知函数，X = (X1, · · · , Xn)是从分布族F 中抽取的样本。设 ĝ1(X), ĝ2(X) : X → Θ，

其中X 为样本空间，且 ĝ1(X) ≤ ĝ2(X)，则称随机区间

[ĝ1(X), ĝ1(X)] ĝ1, ĝ2 : X → Θ

为 g(θ)的一个区间估计（interval estimation）。



1.1 置信区间

置信度

希望随机区间 [θ̂1, θ̂2]包含 θ的概率 Pθ(θ̂1 ≤ θ ≤ θ̂2)越大越好。这个概率就是前面所说的可

靠度，数理统计学上称这个概率为置信度或置信水平。

定义 1.2 (置信水平/置信度，置信系数) 设随机区间 [θ̂1, θ̂2]为参数 θ的一个区间估计，则 [θ̂1, θ̂2]

包含 θ的概率

Pθ(θ̂1 ≤ θ ≤ θ̂2)

称为此区间估计的置信水平（confidence level）。置信水平在参数空间 Θ上的下确界

inf
θ∈Θ

Pθ(θ̂1 ≤ θ ≤ θ̂2)

称为该区间估计的置信系数（confidence efficient）。

精度

精度的标准不止一个。这里介绍其中最常见的一个标准，即随机区间队 [θ̂1, θ̂2]的平均长度

Eθ(θ̂2 − θ̂1)

平均长度越短，精度越高。

例 1.1 设样本X = (X1, · · · , Xn)来自正态总体 N(µ, σ2)。使用 [X̄ − kS/
√
n, X̄ + kS/

√
n]作为

总体均值 µ的区间估计，考察其置信度和精度。

解答 记 θ = (µ, σ2)，上述区间估计的置信度为

Pθ(X̄ − kS/
√
n ≤ µ ≤ X̄ + kS/

√
n) = Pθ(|

√
n(X̄ − µ)/S| ≤ k) = P(|T | ≤ k)

其中 T =
√
n(X̄ − µ)/S ∼ tn−1 与 θ无关。于是置信度为 infθ P(|T | ≤ k) = P(|T | ≤ k)，显然 k

越大，置信度越大。

又因为 (n− 1)S2/σ2 ∼ χ2
n−1，故精度为

lk = E
(
2kS√
n

)
=

2kE(S)√
n

=
2
√
2Γ(n/2)σ√

n(n− 1)Γ((n− 1)/2)
k

故 k越大，区间期望长度越大，精度越小。

故区间估计的好坏，需要权衡置信度和精度。Neyman建议采取如下方案：在保证置信系数
达到指定要求的前提下，尽可能提高精度。

定义 1.3 (置信区间) 设随机区间 [θ̂1, θ̂2]为参数 θ的一个区间估计。若对给定的 0 < α < 1，有

Pθ(θ̂1 ≤ θ ≤ θ̂2) ≥ 1− α ∀ θ ∈ Θ

则称 [θ̂1, θ̂2]是 θ 的置信水平（confidence level）为 1 − α 的置信区间（confidence interval）。而
infθ Pθ(θ̂1 ≤ θ ≤ θ̂2)称为 [θ̂1, θ̂2]的置信系数。
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1.2 置信限

定义 1.4 (置信限) 设 θ̂U(X)和 θ̂L(X)是定义在样本空间X 上，在参数空间 Θ上取值的两个统

计量，若对给定的 0 < α < 1有

Pθ(θ ≤ θ̂U(X)) ≥ 1− α ∀ θ ∈ Θ

Pθ(θ ≥ θ̂L(X)) ≥ 1− α ∀ θ ∈ Θ

则分别称 θ̂U(X)和 θ̂L(X)是 θ的置信水平为 1− α的（单侧）置信上限（upper confidence limit）
和置信下限（lower confidence limit）。上式左端概率在参数空间 Θ上的下确界分别称为置信上、

下限的置信系数。

显然，对置信上限 θ̂U(X)而言，若E(θ̂U(X))越小，则置信上限精度越高；对置信下限 θ̂L(X)

而言，若 E(θ̂L(X))越大，则置信下限的精度越高。

推论 1 设 θ̂U(X)和 θ̂L(X)分别是参数 θ的置信水平为 1−α1和 1−α2的单侧置信下限和置信上

限，且对任意样本X 都有 θ̂L(X) ≤ θ̂U(X)，则 [θ̂U(X), θ̂L(X)]是 θ的置信水平为 1− (α1 + α2)

的双侧置信区间。

证明 由下列事件相互交为空，并为全集

{θ̂L(X) ≤ θ ≤ θ̂U(X)} {θ < θ̂L(X)} {θ > θ̂U(X)}

可知

Pθ(θ < θ̂L(X)) = 1− Pθ(θ ≥ θ̂L(X)) < α1

Pθ(θ > θ̂U(X)) = 1− Pθ(θ ≤ θ̂U(X)) < α2

因此有

Pθ(θ̂L(X) ≤ θ ≤ θ̂U(X)) = 1− Pθ(θ < θ̂L(X))− Pθ(θ > θ̂U(X)) ≥ 1− (α1 + α2)

所以，[θ̂U(X), θ̂L(X)]是 θ的置信水平为 1− (α1 + α2)的双侧置信区间。

1.3 置信域

定义 1.5 (置信域) 设有一个参数分布族 F = {f(x;θ) : θ ∈ Θ}，Θ 是参数空间，其中 θ =

(θ1, · · · , θk) ∈ Θ ⊂ Rk, k ≥ 2。X = (X1, · · · , Xn)是来自分布族F 的样本。若统计量 S(X)满

足

1. 对任一样本X，S(X)是 Θ的一个子集。

2. 对给定的 0 < α < 1，有任意 θ ∈ Θ，有 Pθ(θ ∈ S(X)) ≥ 1− α成立。

则称 S(X)是 θ的置信水平为 1−α的置信域（confidence region）或置信集，而 infθ Pθ(θ ∈ S(X))

称为置信系数。

3



2 枢轴变量法——正态总体参数的置信区间

构造置信区间的常见步骤为：

1. 找待估参数 θ的一个良好点估计，记为 T (X)。

2. 构造一个有关 T, θ的函数 φ(T, θ)，使其满足：

(a). φ(T, θ)的表达式与待估参数 θ有关。

(b). φ(T, θ)的分布与待估参数 θ无关。

称其为枢轴变量。

3. 对给定的 0 < α < 1，优化如下问题

min
a,b

(b− a)

s.t. Pθ(a ≤ φ(T, θ) ≤ b) = 1− α

得到常数 a∗和 b∗（a∗ ≤ b∗）。

4. 解不等式 a∗ ≤ φ(T, θ) ≤ b∗，得到 θ̂1(X) ≤ θ ≤ θ̂2(X)，则有

Pθ(θ̂1(X) ≤ θ ≤ θ̂2(X)) = 1− α

表明 [θ̂1(X), θ̂2(X)]是 θ的置信水平为 1− α的置信区间。

2.1 单个正态总体参数的置信区间

下面对正态分布 N(µ, σ2)的参数 µ, σ2 构造置信区间。设X = (X1, · · · , Xn)是从 N(µ, σ2)

抽取的简单样本，记

X̄ =
1

n

n∑
i=1

Xi S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

分别为样本均值和样本方差。

(1) σ2已知，构造 µ的置信区间

枢轴变量为

U =

√
n(X̄ − µ)

σ
∼ N(0, 1)

于是有 µ的置信水平为 1− α的置信区间为[
X̄ − zα/2 ·

σ√
n
, X̄ + zα/2 ·

σ√
n

]
其中 zα/2为标准正态分布 N(0, 1)的上侧 α/2分位数点。

(2) σ2未知，构造 µ的置信区间
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枢轴变量为

T =

√
n(X̄ − µ)

S
∼ tn−1

于是有 µ的置信水平为 1− α的置信区间为[
X̄ − tn−1(α/2) ·

S√
n
, X̄ + tn−1(α/2) ·

S√
n
,

]
其中 tn−1(α/2)是自由度为 df = n− 1的 t分布 tn−1的上侧 α/2分位数点。

(3)构造 σ2的置信区间

枢轴变量为

X2 =
(n− 1)S2

σ2
∼ χ2

n−1

于是有 σ2的置信水平为 1− α的置信区间为（直接采用对称的简单情况）[√
(n− 1)S2

χ2
n−1(α/2)

,

√
(n− 1)S2

χ2
n−1(1− α/2)

]
其中 χ2

n−1(α/2)是自由度为 df = n− 1的 χ2分布 χ2
n−1的上侧 α/2分位数点。

2.2 两个正态总体参数的置信区间

设X1, · · · , Xm
i.i.d.∼ N(a, σ2

1)和 Y1, · · · , Yn
i.i.d.∼ N(b, σ2

2)，且X1, · · · , Xm与 Y1, · · · , Yn相互独

立。

X̄ =
1

m

m∑
i=1

Xi S2
1 =

1

m− 1

m∑
i=1

(Xi − X̄)2

Ȳ =
1

n

n∑
j=1

Yj S2
1 =

1

n− 1

n∑
j=1

(Yj − Ȳ )2

下面构造总体均值差 b− a和总体方差比 σ2
1/σ

2
2 的置信水平为 1− α的置信区间。

(1) σ2
1 = σ2

2 = σ2未知，构造 b− a的置信区间

枢轴变量为

Tω =
(Ȳ − X̄)− (b− a)

Sω

/√
1

m
+

1

n
∼ tm+n−2

其中

S2
ω =

1

m+ n− 2
[(m− 1)S2

1 + (n− 1)S2
2 ] =

1

m+ n− 2

[
m∑
i=1

(Xi − X̄)2 +
n∑

j=1

(Yj − Ȳ )2

]
于是有 b− a的置信水平为 1− α的置信区间为[

Ȳ − X̄ − tm+n−2(α/2) · Sω

√
1

m
+

1

n
, Ȳ − X̄ + tm+n−2(α/2) · Sω

√
1

m
+

1

n

]
其中 tm+n−2(α/2)是自由度为 df = m+ n− 2的 t分布 tm+n−2的上侧 α/2分位数点。
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(2)构造 σ2
1/σ

2
2 的置信区间

枢轴变量为

F =
S2
1/σ

2
1

S2
2/σ

2
2

∼ Fm−1,n−1

于是有 σ2
1/σ

2
2 的置信水平为 1− α的置信区间为（直接采用对称的简单情况）[

S2
1

S2
2

1

Fm−1,n−1(α/2)
,
S2
1

S2
2

1

Fm−1,n−1(1− α/2)

]
其中 Fm−1,n−1(α/2)是自由度为 df1 = m− 1, df2 = n− 1的 F 分布 Fm−1,n−1的上侧 α/2分位数

点。

3 枢轴变量法——非正态总体参数的置信区间

3.1 小样本方法

(1)指数分布参数的置信区间

设 X1, · · · , Xn
i.i.d.∼ Exp(λ)，其密度函数为

f(x;λ) = λe−λx · I(0,∞)(x) λ > 0

求 λ的置信系数为 1− α的置信区间。

注意到 X̄ 是 1/λ的 UMVUE，且由指数分布与 Γ分布的关系，有 nX̄ ∼ Γ(n, λ)。再由 Γ分

布的性质

T = 2λ(nX̄) ∼ χ2
2n

为枢轴变量。下面求 a, b使得

P(a ≤ 2λnX̄ ≤ b) = 1− α

无显式表达，故直接考虑对称，如此得到 λ的置信水平为 1− α的置信区间为[
χ2
2n(1− α/2)

2nX̄
,
χ2
2n(α/2)

2nX̄

]
其中 χ2

2n(α/2)是自由度 df = 2n的 χ2分布 χ2
2n的上 α/2分位数点。

(2)均匀分布参数的置信区间

设 X1, · · · , Xn
i.i.d.∼ U(0, θ)，其密度函数为

f(x;λ) = θ−1 · I(0,θ)(x) θ > 0
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求 θ的置信系数为 1− α的置信区间。

注意到 (n+ 1)X(n)/n是 θ的 UMVUE，且 Yi = Xi/θ ∼ U(0, 1)，同时记 Y(n) = X(n)/θ的密

度函数为 fY(n)
(y)，那么枢轴量为

Z = 1/Y(n) = θ/X(n) ∼ gZ(z)

而根据变量代换，可由 fY(n)
(y)求得 gZ(z)

fY(n)
(y) = nyn−1 · I(0,1)(y) ⇒ gZ(z) = fY(n)

(1/z) · |∂y/∂z| = nz−(n+1) · I(1,∞)(z)

下面求 d1, d2使得

P(d1 ≤ θ/X(n) ≤ d2) =

ˆ d2

d1

gZ(z) dz = d−n
1 − d−n

2 = 1− α

同时要求mind1,d2 d2 − d1，得到最优解为 d1 = 1, d2 = 1/ n
√
α。如此得到 θ的置信水平为 1− α的

置信区间为 [
X(n),

X(n)

n
√
α

]

3.2 大样本方法

(1)基于MLE的近似置信区间

设总体 X 的密度函数为 f(x; θ)，令X = (X1, · · · , Xn)为从总体 X 中抽取的简单样本。那

么，由之前的定理，θ的MLE θ̂∗n = θ̂∗n(X)有渐近正态分布

√
n(θ̂∗n − θ)

L−→ N(0, [I(θ)]−1)

即 θ̂∗n渐近服从N(θ, [nI(θ)]−1)，此时 θ̂∗n的渐近方差达到了 C-R下界。其中 I(θ)为 Fisher信息量

I(θ) = Eθ

[(
∂ log f(X; θ)

∂θ

)2
]

记 σ2(θ) = [I(θ)]−1未知。用 θ̂∗n代替 θ来估计渐近方差。大数定律保证

σ(θ̂∗n)
P−→ σ(θ)

再由 Slutsky定理可证
√
n(θ̂∗n − θ)

σ(θ̂∗n)
=

√
n(θ̂∗n − θ)

σ(θ)
· σ(θ)

σ(θ̂∗n)

L−→ N(0, 1)

于是枢轴量为

T =

√
n(θ̂∗n − θ)

σ(θ̂∗n)
=

√
n(θ̂∗n − θ)[I(θ̂∗n)]

−1/2
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则有

P

(∣∣∣∣∣
√
n(θ̂∗n − θ)

σ(θ̂∗n)

∣∣∣∣∣ ≤ zα/2

)
≈ 1− α

其中 zα/2为标准正态分布 N(0, 1)的上 α/2分位数点。于是 θ的置信系数为 1−α的置信区间为[
θ̂∗n − zα/2 ·

σ(θ̂∗n)√
n

, θ̂∗n + zα/2 ·
σ(θ̂∗n)√

n

]

(2)比率 p的置信区间

设X = (X1, · · · , Xn)
i.i.d.∼ B(1, p)，则有

Sn =
n∑

i=1

Xi ∼ B(n, p)

要求 p的置信区间。

利用中心极限定理，有

Sn − np√
np(1− p)

=

√
n(X̄ − p)√
p(1− p)

L−→ N(0, 1) n → ∞

于是，当 n充分大时，取枢轴量为

T =

√
n(X̄ − p)√
p(1− p)

L−→ N(0, 1)

包含未知参数 p且分布已知。那么 1− α置信区间只需解不等式

|T | =

∣∣∣∣∣
√
n(X̄ − p)√
p(1− p)

∣∣∣∣∣ ≤ zα/2

其中 zα/2为标准正态分布 N(0, 1)的上 α/2分位数点，即有

n(X̄ − p)2

p(1− p)
≤ z2α/2 ⇒ (n+ z2α/2)p

2 − (2nX̄ + z2α/2)p+ nX̄2 ≤ 0

解二次不等式，得到 p的 1− α置信区间为

n

n+ z2α/2

2nX̄ + z2α/2
2n

± zα/2 ·

√
X̄(1− X̄)

n
+

z2α/2
4n2


称此置信区间为得分区间（score interval）。

也可以使用 X̄ 来估计 p，从而估计方差。由 X̄
P−→ p，可知√

p(1− p)

X̄(1− X̄)

P−→ 1

√
n(X̄ − p)√
p(1− p)

L−→ N(0, 1)
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由 Slutsky定理可知，构造新的枢轴量

T̃ =

√
n(X̄ − p)√
X̄(1− X̄)

=

√
n(X̄ − p)√
p(1− p)

·

√
p(1− p)

X̄(1− X̄)

L−→ N(0, 1)

于是，此时 p的 1− α置信区间为[
X̄ − zα/2 ·

√
X̄(1− X̄)

n
, X̄ + zα/2 ·

√
X̄(1− X̄)

n

]

(3)基于独立同分布样本中心极限定理的近似置信区间

设X = (X1, · · · , Xn)为来自总体 F 的简单随机样本，假设总体均值 µF 和总体方差 σ2
F 存

在，则可由中心极限定理得到 √
n(X̄ − µF )

σF

L−→ N(0, 1)

求 µF 的置信区间，可构造枢轴量

T =

√
n(X̄ − µF )

S
=

√
n(X̄ − µF )

σF

· σF

S

L−→ N(0, 1)

这是因为，当 n充分大，样本标准差 S是 σF 的相合估计，即 S
P−→ σF。再由 Slutsky定理可证。

如此 µF 的 1− α置信区间为 [
X̄ − zα/2 ·

S√
n
, X̄ + zα/2 ·

S√
n

]
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