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1 点估计

1.1 点估计的含义

定义 1.1 (点估计) 设X = (X1, · · · , Xn)是从某个总体中抽取的样本，ĝ(X) = ĝ(X1, · · · , Xn)是

样本的函数，用 ĝ(X)作为参数的函数 g(θ)的估计，称为点估计（point estimation）。

1.2 无偏性

定义 1.2 (无偏性) 设X = (X1, · · · , Xn)是从总体 {f(x, θ) : θ ∈ Θ}中抽取的样本，g(θ)是定义

在参数空间 Θ上的已知函数。ĝ(X)是 g(θ)的一个估计量，若

Eθ{ĝ(X)} = g(θ), θ ∈ Θ

则称 ĝ(X)为 g(θ)的一个无偏估计（unbiased estimation），记 ĝ(X) = ĝn(X)。若Eθ{ĝn(X)} ̸= g(θ)

但

lim
n→∞

Eθ{ĝn(X)} = g(θ), θ ∈ Θ

则称 ĝn(X)为 g(θ)的渐近无偏估计（asymptotically unbiased estimation）。

例 1.1 设 X1, · · · , Xn 是取自期望为 µ，方差为 σ2 的总体的一个样本。显然样本均值 X̄ 是 µ的

无偏估计。证明：样本方差 S2 =
∑n

i=1(Xi − X̄)2/(n− 1)是 σ2的无偏估计。
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证明 显然

E(S2) =
1

n− 1

[
n∑

i=1

E(X2
i )− nE(X̄2)

]
=

n

n− 1
[E(X2

1 )− E(X̄2)]

=
n

n− 1
[(σ2 + µ2)− (σ2/n+ µ2)] = σ2

故 S2是 σ2的无偏估计。

1.3 有效性

定义 1.3 (有效性) 设 ĝ1(X)和 ĝ2(X)为 g(θ)的两个不同的无偏估计，若

Dθ{ĝ1(X)} ≤ Dθ{ĝ2(X)}, ∀ θ ∈ Θ

且至少存在一个 θ ∈ Θ使得不等号严格成立，则称 ĝ1(X)比 ĝ2(X)有效。

1.4 相合性

定义 1.4 对 n ∈ N，ĝn(X)是 g(θ)的一个估计量，若 ĝn(X)依概率收敛到 g(θ)，即对任意 θ ∈ Θ

及 ϵ > 0有

lim
n→∞

Pθ(|ĝn(X)− g(θ)| ≥ ϵ) = 0

则称 ĝn(X)为 g(θ)的弱相合估计（weakly consistent estimation）。若对任意 θ ∈ Θ有

Pθ

(
lim
n→∞

ĝn(X) = g(θ)
)
= 1

即几乎处处收敛，则称 ĝn(X)为 g(θ)的强相合估计（strongly consistent estimation）。

注 无偏性是小样本性质；相合性和渐近正态性是大样本性质。无偏 ̸⇒相合；有偏也可以相合
（e.g. X̄ + 1/n）。强相合⇒弱相合，反之不必对。

例 1.2 设X = (X1, · · · , Xn)是从均匀分布 U(0, θ)中抽取的简单随机样本，θ为未知参数。证明：

T (X) = (
∏n

i=1 Xi)
1/n是 g(θ) = θe−1的强相合估计。

证明 令 Yi = logXi则 Yi相互独立，且联合密度为

f(y, θ) =
1

θ
ey · I(−∞,log θ)(y)

且

E(Y1) =
1

θ

ˆ log θ

−∞
yey dy =

1

θ

[
yey
∣∣log θ
−∞ −

ˆ log θ

−∞
ey dy

]
= log θ − 1

由强大数定律可知

log T (X) =
1

n

n∑
i=1

logXi =
1

n

n∑
i=1

Yi = Ȳ
a.s.−→ E(Y1) = log θ − 1

因此有

T (X) = exp(Ȳ )
a.s.−→ exp(log θ − 1) = θe−1

故，T (X) = (
∏n

i=1 Xi)
1/n是 g(θ) = θe−1的强相合估计。
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2 矩估计MM

2.1 矩法和矩估计

定义 2.1 (原点矩和中心矩) 设样本 X1, · · · , Xn是从总体 X 中抽取的简单随机样本。

总体 k阶原点矩为

αk = E{Xk}

样本 k阶原点矩为

ank =
1

n

n∑
i=1

Xk
i

总体 k阶中心矩为

µk = E{[X − E(X)]k}

样本 k阶中心矩为

mnk =
1

n

n∑
i=1

(Xi − X̄)k

定义 2.2 (矩估计) 设有总体分布族 {f(x; θ) : θ ∈ Θ}，Θ是参数空间，g(θ)是定义在 Θ上参数 θ

的函数，它可以表示为总体分布的某些矩的函数，即

g(θ) = G(α1, · · · , αk;µ2, · · · , µs)

设X = (X1, · · · , Xn)是从上述分布族中抽取的简单样本，用样本矩代替总体矩得到

ĝ(X) = G(an1, · · · , ank;mn2, · · · ,mns)

则 ĝ(X)作为 g(θ)的估计量，称为 g(θ)的矩估计量（moment estimate）。

例 2.1 (Maxwell分布) 设总体分布有概率密度

f(x, θ) = 2
√

θ/π exp(−θx2) · I(x > 0)

其中 θ为未知参数。设X = (X1, · · · , Xn)为从这个分布中抽取的简单随机样本，求 g(θ) = 1/θ

的矩估计量。

解答 求总体一阶矩 α1

α1 = E(X) = 2

√
θ

π

ˆ ∞

0

xe−θx2

dx =
1√
πθ

解得 g(θ) = 1/θ = πα2
1，将 α1用 an1 = X̄ 代替，有矩估计 ĝ(θ) = ĝ1(X) = πX̄2。

类似地，求总体二阶矩

α2 = E(X2) = 2

√
θ

π

ˆ ∞

0

x2e−θx2

dx =
1

2θ

所以可以用 an2 =
∑n

i=1 X
2
i /n得到另一个矩估计 ĝ(θ) = ĝ2(X) = 2an2。
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由此可知，矩估计不唯一。但注意到

E{ĝ1(X)} = πE{X̄2} = π(Var(X̄) + (E(X̄))2) = π

(
1

n

(
1

2θ
− 1

πθ

)
+

1

πθ

)
=

(
1− 1

n
+

π

2n

)
1

θ

不是无偏的，而

E{ĝ2(X)} =
2

n
E{

n∑
i=1

X2
i } =

2

n
n
1

2θ
=

1

θ

为无偏估计。

2.2 矩估计的无偏性和渐近无偏性

命题 2.1 样本 k阶原点矩 ank 是总体 k阶原点矩 αk 的无偏估计，即

E{ank} = E

{
1

n

n∑
i=1

Xk
i

}
=

1

n

n∑
i=1

E{Xk
i } = E{Xk

1 } = αk

命题 2.2 对 k ≥ 2，样本 k阶中心矩mnk 不是总体 k阶中心矩 µk 的无偏估计，需要调整

E{S2} = E
{

n

n− 1
·mn2

}
= µ2

E{m∗
n3} = E

{
n2

(n− 1)(n− 2)
·mn3

}
= µ3

E{mnν} = µν +O (1/n) , ∀ ν ≥ 4

即矩估计一般具有渐近无偏性。

2.3 矩估计的相合性

定理 2.3 矩估计均有强相合性，即 ank
a.s.−→ αk 以及mnk

a.s.−→ µk

证明 由强大数定律可知

ank =
1

n

∑n

i=1
Xk

i
a.s.−→ 1

n
· nE(Xk

1 ) = αk

下面证明mnk 的相合性。由

mnk =
1

n

∑n

i=1
(Xi − X̄)k =

1

n

∑n

i=1

∑k

r=0

(
k

r

)
Xr

i (−X̄)k−r

=
1

n

∑k

r=0

(
k

r

)
(−1)k−rX̄k−r

∑n

i=1
Xr

i

=
∑k

r=0

(
k

r

)
(−1)k−rX̄k−r

(
1

n

∑n

i=1
Xr

i

)
=
∑k

r=0

(
k

r

)
(−1)k−rak−r

n1 anr, an0 = 1

:= f(an1, · · · , ank)
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而 ank
a.s.−→ αk，由下面的引理 2.4可知

mnk = f(an1, · · · , ank)
a.s.−→ f(α1, · · · , αk)

又注意到

µk = E{[X − E(X)]k} = E
{∑k

r=0

(
k

r

)
Xr(−E(X))k−r

}
=
∑k

r=0

(
k

r

)
(−1)k−rE{Xr}E(X)k−r

=
∑k

r=0

(
k

r

)
(−1)k−rαk−r

1 αr

= f(α1, · · · , αk)

所以mnk
a.s.−→ µk，命题证毕。

引理 2.4 (*) 设函数 f(yn1, · · · , ynk)在 (c1, · · · , ck)处连续，若 yni
a.s.−→ ci 对任意 i = 1, · · · , k 成

立，则有 f(yn1, · · · , ynk)
a.s.−→ f(c1, · · · , ck)。

证明 (*) 由 f 在 (c1, · · · , ck)处连续，故有 ∀ ϵ > 0, ∃ δ > 0使得对 ∀ (y1, · · · , yk)

max
1≤i≤k

|yi − ci| < δ ⇒ |f(y1, · · · , yk)− f(c1, · · · , ck)| < ϵ (1)

对每个 i和固定的 δ构造集合

Bi,δ = {ω : ∃ N ∈ N, s.t. ∀ n ≥ N, |yni(ω)− ci| < δ} ⊆ Ω

其中 Ω为全集。Bi,δ 代表了所有满足下面条件的 ω构成的集合：

∃ N ∈ N, s.t. ∀ n ≥ N, |yni(ω)− ci| < δ ⇔ lim
n→∞

yni(ω) = ci

即 Bi,δ = {ω : limn→∞ yni(ω) = ci}。由 yni
a.s.−→ ci对任意 i = 1, · · · , k成立，有

P ({ω : lim
n→∞

yni = ci}) = 1, i = 1, · · · , k

故 P (Bi,δ) = 1对任意 i = 1, · · · , k。取有限交 Bδ = ∩k
i=1Bi,δ，依旧有 P (Bδ) = 1。换言之，对任

意 ω ∈ Bδ都有 ∃Ni(ω) ∈ N使得 ∀ n ≥ Ni(ω)时 |yni(ω)− ci| < δ，对 i = 1, · · · , k。于是，我们取

N(ω) = max
1≤i≤k

Ni(ω)

那么对于 ∀ n ≥ N(ω)都有 |yni(ω)− ci| < δ，即 max1≤i≤k |yni(ω)− ci| < δ。由式 1可知

|f(yn1(ω), · · · , ynk(ω))− f(c1, · · · , ck)| < ϵ (2)

综上，对 ∀ ϵ > 0都存在 δ > 0，使得对 ∀ ω ∈ Bδ 存在 N(ω)，对 ∀ n ≥ N(ω)有式 2成立。而
ω ∈ Bδ 满足 P (Bδ) = 1，即由几乎处处收敛的定义⇒ f(yn1, · · · , ynk)

a.s.−→ f(c1, · · · , ck)。

定理 2.5 设X = (X1, · · · , Xn)是从总体 F 中抽取的简单随机样本，待估函数 g(θ) = G(α1, · · · ,
αk, µ2, · · · , µs)，其矩估计为 ĝn(X) = G(an1, · · · , ank,mn2, · · · ,mns)，且G为其变元的连续函数，

则 ĝn(X)为 g(θ)的强相合估计。
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2.4 矩估计的渐近正态性

定义 2.3 (相合渐近正态估计) 设X = (X1, · · · , Xn)是从总体 {f(x; θ) : θ ∈ Θ}中抽取的简单随
机样本。若存在与样本空间大小 n相关的，定义于参数空间 Θ上的函数 An(θ)和 Bn(θ)，其中

Bn(θ) > 0, ∀ θ ∈ Θ，使得

ĝn(X)− An(θ)

Bn(θ)

L−→ N(0, 1), as n → ∞

且 ĝn(X)是 g(θ)的弱相合估计，则称 ĝn(X)为 g(θ)的相合渐近正态估计（consistent asymptotic
normal estimation，CAN估计）。

定理 2.6 (δ方法) 设映射 ϕ : D ⊆ Rk → S ⊆ Rm在 θ处可微。若 ∃ rn → ∞有

rn(Tn − θ)
L−→ T

则有

rn(ϕ(Tn)− ϕ(θ))
L−→ ϕ′(θ) · T

其中 ϕ′(θ) ∈ Rm×k 为

ϕ′(θ) =

(
∂ϕi

∂θj

)
i=1,··· ,m; j=1,··· ,k

∈ Rm×k

证明 下面给出不严格的证明：由于 ϕ在 θ处可微，由 Taylor展开

ϕ(Tn) ≈ ϕ(θ) + ϕ′(θ)(Tn − θ)

所以有 rn(ϕ(Tn)− ϕ(θ)) = ϕ′(θ) · rn(Tn − θ)
L−→ ϕ′(θ) · T，命题证毕。

定理 2.7 (矩估计的近似正态性) 设X = (X1, · · · , Xn)是从总体 {f(x; θ) : θ ∈ Θ}中抽取的简单
随机样本，g(θ)是定义在 Θ上的实函数，它可以表示为 g(θ) = G(α1, · · · , αk)，这是因为 µs 可

由 (α1, · · · , αk)表出。记 ĝn(X) = G(an1, · · · , ank)为 g(θ)的矩估计。再设总体的 2k阶原点矩存

在，且 G对其各变元的一阶偏导数存在连续，令

B = (bij)i,j=1,··· ,k ∈ Rk×k

d = (d1, · · · , dk)T ∈ Rk

其中 bij = αi+j − αiαj（i, j = 1, · · · , k）及 di = ∂G(α1, · · · , αk)/∂αi（i = 1, · · · , k）。

结论：ĝn(X)为 g(θ)的 CAN估计，即 ĝn(θ)为 g(θ)的弱相合估计，且

√
n(ĝn(X)− g(θ))

L−→ N(0, b2) n → ∞

其中 b2 = dTBd ∈ R。

证明 由定理 2.3可知，矩估计都是强相合估计，那必是弱相合估计。下面证明渐近正态性。
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由 E{ani} = αi, ∀ i = 1, · · · , k，所以由中心极限定理
√
n(a−α)

L−→ T ∼ N(0,A)

其中a = (an1, · · · , ank)T ∈ Rk而α = (α1, · · · , αk)
T ∈ Rk。而A = n[Cov(ani, anj)]i,j=1,··· ,k ∈ Rk×k

为协方差阵。那么由 δ方法 2.6
√
n[G(a)−G(α)]

L−→ [G′(α)]T · T ∼ N(0, [G′(α)]TA[G′(α)])

注意到 a = (an1, · · · , ank)T 实则是 X 的函数，故 G(a) = ĝn(X)。而 g(θ) = G(α1, · · · , αk) =

G(α)，故有
√
n(ĝn(X)− g(θ))

L−→ N(0, [G′(α)]TA[G′(α)])

于是，我们只需证 [G′(α)]TA[G′(α)] = b2。首先注意到

G′(α) = [∂G(α1, · · · , αk)/∂αi]
T
i=1,··· ,k = (d1, · · · , dk)T = d

所以 [G′(α)]TA[G′(α)] = dTAd，于是我们只需证A = B即可。注意到

Cov(ani, anj) = E(anianj)− E(ani)E(anj) = E
{(

1

n

∑n

l=1
X i

l

)
·
(
1

n

∑n

l=1
Xj

l

)}
− αiαj

=
1

n2
E
{∑n

l1=1

∑n

l2=1
X i

l1
Xj

l2

}
− αiαj

=
1

n2
E
{∑n

l1=l2=l
X i+j

l +
∑

l1 ̸=l2
X i

l1
Xj

l2

}
− αiαj

由于当 l1 ̸= l2时 Xl1 ⊥⊥ Xl2 故

Cov(ani, anj) =
1

n2

[∑n

l1=l2=l
E(X i+j

l ) +
∑

l1 ̸=l2
E(X i

l1
)E(Xj

l2
)
]
− αiαj

=
1

n2

[∑n

l1=l2=l
αi+j +

∑
l1≠l2

αiαj

]
− αiαj

= [nαi+j + n(n− 1)αiαj]/n
2 − αiαj = [αi+j − αiαj]/n

所以有A = n[Cov(ani, anj)]i,j=1,··· ,k = (αi+j − αiαj)i,j=1,··· ,k = B，综上命题证毕。

3 极大似然估计MLE

3.1 定义及求解

3.1.1 极大似然估计的定义

定义 3.1 (似然函数) 设 f(x;θ) = f(x1, · · · , xn;θ)为样本X = (X1, · · · , Xn)的概率函数。当 x

固定时，将 f(x;θ)看成 θ的函数，称为似然函数（likelihood function）。记为

L(θ;x) = f(x;θ), θ ∈ Θ, x ∈ X

其中 Θ为参数空间，X 为样本空间。称 logL(θ;x)为对数似然函数，记作 l(θ;x)。
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定义 3.2 (极大似然估计) 设X = (X1, · · · , Xn)是从总体 F = {f(x,θ) : θ ∈ Θ}中抽取的简单
随机样本，L(θ;x)是似然函数，若存在统计量 θ̂∗ = θ̂∗(X)，满足条件

L(θ̂∗;x) = sup
θ∈Θ

L(θ;x), x ∈ X

或等价地

l(θ̂∗;x) = sup
θ∈Θ

l(θ;x), x ∈ X

则称 θ̂∗(X)为 θ的极大似然估计（maximum likelihood estimation，MLE）。若待估函数是 g(θ)，

则定义 g(θ̂∗(X))为 g(θ)的MLE。

估计MLE可以采用 2种方法：(1)根据微积分中求极值；(2)根据极大似然估计的定义。

3.1.2 MLE求解：根据微积分中求极值

(1)根据微积分中求极值的方法：设 θ = (θ1, · · · , θk)T ∈ Rk 为参数向量，若 l(θ;x)的极大

值在参数空间 Θ的内点处（而非边界点）达到，则此点必满足

∂l(θ;x)

∂θi
= 0, i = 1, · · · , k

除此之外，还需要验证 Hessian阵的负定性，即

H(θ) =

(
∂2l(θ;x)

∂θi∂θj

)
i,j=1,··· ,k

∈ Rk×k

满足 vTHv < 0对任意 v ∈ Rk。

定理 3.1 (指数族的MLE) 设X = (X1, · · · , Xn)是从指数族中抽取的简单随机样本，

f(x;θ) = C(θ) exp

{
k∑

i=1

θiTi(x)

}
h(x), θ ∈ Θ

设Θ0是Θ的内点集，记L(θ;x)是其似然函数，l(θ;x)是对应的对数似然函数。要求 (T1, · · · , Tk)

以概率为 1线性独立。则有若

∂l(θ;x)

∂θi
= 0, i = 1, · · · , k

在 Θ0中有解 θ̂，则其必唯一，且为 θ的MLE。

证明 先证明解的唯一性，然后证明其为最优的。

(1)唯一性若设 θ0和 θ1为满足 l′(θ) = 0的 2个不同的解。由之前证明的性质：指数族参数

空间的内点集 Θ0必是凸集，有

θ̂ ≜ t · θ0 + (1− t) · θ1 ∈ Θ0, t ∈ [0, 1]
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记 l(tθ0 + (1− t)θ1) = H(t)，注意到 l′(θ0) = 0, l′(θ1) = 0，以及 H ′(t) = (θ0 − θ1)
T l′(θ̂)。其中

l′(θ̂) ∈ Rk。于是有 H ′(0) = H ′(1) = 0。由 Rolle定理 3.2，存在 t0 ∈ (0, 1)使得 H ′′(t0) = 0。

而H ′′(t) = (θ0−θ1)
T l′′(θ̂)(θ0−θ1)，其中 l′′(θ̂) ∈ Rk×k。由之前关于指数族性质的证明可知

l′′(θ̂) = n

[
∂2 logL(θ)

∂θi∂θj

]
i,j=1,··· ,k

= n

[
∂ logC(θ)

∂θiθj

]
i,j=1,··· ,k

= n [−Cov(Ti, Tj)]i,j=1,··· ,k ∈ Rk×k

所以容易得到 ∀ t都有 l′′(θ̂) = l′′(tθ0 + (1− t)θ1) = n [−Cov(Ti, Tj)]i,j=1,··· ,k ≺ 0。这是因为协方

差阵总是半正定，而这里有 (T1, · · · , Tk)以概率为 1线性独立。

于是若 θ0 ̸= θ1，则 H ′′(t) < 0, ∀ t ∈ (0, 1)。与存在 t0 ∈ (0, 1)使得 H ′′(t0) = 0矛盾。故

θ0 = θ1，唯一性证毕。

(2) MLE设 θ0 为唯一解，使得 l′(θ0) = 0。那么对于 ∀ θ̃ ∈ Θ，沿用 (1)对 H(t) = l(tθ0 +

(1− t)θ̃)的定义。

有 H ′(1) = 0（注 H ′(0)的性质不知），以及 H ′′(t) < 0对 t ∈ (0, 1)。于是 H ′ 在 (0, 1)单调

递减，那么 H ′(t) > H ′(1) = 0, ∀ t ∈ (0, 1)。于是 H 在 (0, 1)单调递增，那么 H(1) > H(0)，即

l(θ0) > l(θ̃)对任意 θ̃ ∈ Θ，即唯一解 θ0是MLE。

注 对于随机向量X = (X1, · · · , Xk) ∈ Rk，记 µ = E{X}，则有 Cov(X) ⪰ 0即协方差阵半正

定。

证明 对任意向量 v ∈ Rk，有

vTCov(X)v = vTE{(X − µ)(X − µ)T}v = E{vT (X − µ)(X − µ)Tv}

= E{[(X − µ)Tv]T [(X − µ)Tv]} := E{yTy} ≥ 0

其中 y = (X − µ)Tv。所以 Cov(X) ⪰ 0。

定理 3.2 (Rolle定理) 令 f 在闭区间 [a, b]上连续，在开区间 (a, b)上可导。假如 f(a) = f(b)，则

在开区间 (a, b)中存在至少一个点 c，满足 f ′(c) = 0。

证明 由于 f 在 [a, b]上连续，根据闭区间上连续函数的最值定理，f 在 [a, b]上必能取得最大值

M 和最小值m。

如果M = m，则 f 在 [a, b]上是常数函数，于是在 (a, b)内任意一点 c都有 f ′(c) = 0，结论

成立。

如果M > m，因为 f(a) = f(b)，所以最大值M 和最小值 m中至少有一个在 (a, b)内某点

c取得。不妨设 f(c) = M，其中 c ∈ (a, b)。我们来证 f ′(c) = 0。由于 f 在 c处可导，考虑导数

定义：

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
.

当 h > 0时，f(c+h)−f(c)
h

≤ 0（因为 f(c)是最大值），所以

f ′(c) = lim
h→0+

f(c+ h)− f(c)

h
≤ 0.
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当 h < 0时，f(c+h)−f(c)
h

≥ 0，所以

f ′(c) = lim
h→0−

f(c+ h)− f(c)

h
≥ 0.

因此 f ′(c) ≥ 0且 f ′(c) ≤ 0，只能 f ′(c) = 0。如果最小值m在 (a, b)内取到，同理可证该点处导

数为零。综上，总存在 c ∈ (a, b)使得 f ′(c) = 0。

使用微积分中求极值的方法，其流程相对比较简单，只需求出似然函数，以最大化似然函

数为目标，对参数进行优化即可。

3.1.3 MLE求解：根据定义

当似然函数不可微，甚至不连续时，只能通过极大似然的定义进行求解。

例 3.1 设X = (X1, · · · , Xn)是从均匀分布族 {U(θ, θ+1) : θ ∈ R}中抽取的简单随机样本，求 θ

的MLE。

解答 给定样本 x时的似然函数为

L(θ;x) = I(θ < x(1) ≤ x(n) < θ + 1) = I(x(n) − 1 < θ < x(1))

似然函数最大只能为 1，需要满足 x(n) − 1 < θ < x(1)，所以有 θ̂ = t(X(n) − 1) + (1− t)X(1)其中

t ∈ (0, 1)均为 θ的MLE。所以此时满足极大似然估计的 θ̂有无穷多个。

3.2 极大似然估计的性质

3.2.1 极大似然估计的无偏性和相合性

极大似然估计可能无偏，也可能有偏。极大似然估计可能相合，也可能不相合。下面给出极

大似然估计强相合性的结果。

定理 3.3 (*) 设Xn = (X1, · · · , Xn)是从分布族 F = {f(x; θ) : θ ∈ Θ}中抽取的简单随机样本，
其中 Θ为任一开区间，若有下面的条件成立：

1. 分布族F 是可识别的，即对 Θ中任意的 θ1 ̸= θ2，都有 f(x; θ1) ̸= f(x; θ2)。

2. 对任意 x ∈ X , θ ∈ Θ有 f(x; θ) > 0，且一阶偏导数 ∂f(x; θ)/∂θ存在、连续。那么在任一

Pθ 下，以概率为 1当 n充分大时，对数似然函数方程：∑n

i=1

∂f(xi; θ)

∂θ
= 0

存在一个解。

那么解 θ̂n是强相合的，即 θ̂n
a.s.−→ θ, n → ∞。
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3.2.2 极大似然估计与充分统计量

定理 3.4 设 X = (X1, · · · , Xn) 是从总体 {f(x; θ) : θ ∈ Θ} 中抽取的简单随机样本，T (X) 是

参数 θ 的充分统计量。若 θ 的极大似然估计 θ̂MLE 存在，则它必为充分统计量 T 的函数，即

θ̂MLE = θ̂MLE(T (X))。

证明 由因子分解定理可知样本X 的概率函数，即似然函数可表示为

L(θ,x) =
n∏

i=1

f(xi; θ) = g(T (x), θ)h(x)

若 θ的MLE存在，记为 θ̂MLE，则它满足

L(θ̂MLE,x) = sup
θ∈Θ

L(θ,x) ⇒ g(T (x), θ̂MLE) = sup
θ∈Θ

g(T (x), θ)

上式中 g(T (x), θ̂MLE) = supθ∈Θ g(T (x), θ)左右式都只与 T (X)和 θ̂MLE 有关，故 θ̂MLE 可以写成

T (X)的函数。

3.2.3 极大似然估计的相合渐近正态性

只考虑参数 θ为一维的情形。设F = {f(x; θ) : θ ∈ Θ}为一概率函数族，Θ = (a, b)为 R上
开区间，F 是可识别的。设 f(x; θ)满足下列条件：

(1) 对一切 θ ∈ Θ, x ∈ X 有 f(x; θ) > 0，且 f(x; θ)有直到 2阶的连续偏导数。

(2) 对任一给定的 θ0，存在它的一个邻域 U(θ0)和可能依赖于该 θ0的函数 g(x) > 0和G(x) > 0，

对该邻域内的任一 θ，有∣∣∣∣∂f(x; θ)∂θ

∣∣∣∣ < g(x)

∣∣∣∣∂2f(x; θ)

∂θ2

∣∣∣∣ < g(x)

∣∣∣∣∂2f(x; θ)

∂θ2
− ∂2f(x; θ0)

∂θ2

∣∣∣∣ ≤ G(x)(θ − θ0)
2

且 ˆ ∞

−∞
g(x) dx < ∞ Eθ0 [G(x)] =

ˆ ∞

−∞
G(x)f(x; θ0) dx < ∞

(3) 对一切 θ ∈ Θ，有

0 < I(θ) ≜ E

[(
∂ log f(X; θ)

∂θ

)2
]
=

ˆ ∞

−∞

(
∂ log f(X; θ)

∂θ

)2

f(x; θ) dx < ∞

这里 I(θ)称为 Fisher信息量。

定理 3.5 (MLE 的渐近正态性定理) 设 X = (X1, · · · , Xn) 为自分布族 F 中抽取的简单随机样

本，若上述条件 (1) (2) (3)满足，则对任何 θ0 ∈ Θ，对数似然方程∑n

i=1

∂f(xi; θ)

∂θ
= 0

有一根 θ̂n = θ̂(X)，则其满足

√
n(θ̂n − θ0)

L−→ N
(
0, I−1(θ0)

)
, θ ∈ Θ

且 θ̂n为 θ0的弱相合估计。
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证明 由 Taylor展开，我们有

l′(θ̂n) = l′(θ0) + l′′(θ0)(θ̂n − θ0) +
l′′′(θ̃)

2
(θ̂n − θ0)

2

其中 l(θ)为对数似然函数，θ̃位于 θ̂n和 θ0之间。而由MLE的定义，有 l′(θ̂n) = 0，于是将上式

变形
√
n(θ̂n − θ0) =

1√
n
l′(θ0)

− 1
n
l′′(θ)− 1

2n
l′′′(θ̃)(θ̂n − θ0)

(3)

(A)注意到 l(θ) =
∑n

i=1 log f(xi; θ)，而

E
(
∂ log f(x; θ)

∂θ

)
= E

(
f ′(x; θ)

f(x; θ)

)
=

ˆ
f ′(x; θ)

f(x; θ)
· f(x; θ) dx =

ˆ
f ′(x; θ) dx

而
∂

∂θ

´
f(x; θ) dx =

∂

∂θ
1 = 0，故上式

´
f ′(x; θ) dx = 0。容易推出 E[l′(θ) = 0]。而 l(θ)又是求和

形式，故有中心极限定理知

√
n

(
l′(θ0)

n
− E

[
l′(θ0)

n

])
L−→ N (0,Var(l′(θ0)))

注意到 E
[
l′(θ0)

n

]
= 0，有

Var(l′(θ0)) = E

[(
∂ log f(x; θ0)

∂θ

)2
]
= I(θ0)

综上就有
1√
n
l′(θ0)

L−→ N(0, I(θ0)) (4)

(B)先证明下面的结论

−E
[
∂2 log f(x; θ)

∂θ2

]
= E

[(
∂ log f(x; θ)

∂θ

)2
]

由密度函数的性质
´
f(x; θ) dx = 1可以得到

´
f ′(x; θ) dx =

´
f ′′(x; θ) dx = 0，于是有

−E
[
∂2 log f(x; θ)

∂θ2

]
= −
ˆ (

f ′′(x; θ)f(x; θ)− [f ′(x; θ)]2

[f(x; θ)]2

)
· f(x; θ) dx

= 0 +

ˆ (
f ′(x; θ)

f(x; θ)

)2

· f(x; θ) dx

=

ˆ (
∂ log f(x; θ)

∂θ

)2

· f(x; θ) dx

= E

[(
∂ log f(x; θ)

∂θ

)2
]

结论得证。又注意到 l′′(θ0)是求和的形式，于是根据大数定律有

1

n
l′′(θ0) =

1

n

n∑
i=1

∂2 log f(x; θ)

∂θ2
P−→ E

[
∂2 log f(x; θ)

∂θ2

]
= −I(θ0) (5)
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(C)由条件 (2)和大数定律

1

n
l′′′(θ̃)

P−→ E(l′′′(θ̃)) < ∞ (6)

有限，不妨设 1
n
l′′′(θ̃) → M。

综合 (A) (B) (C)，结合条件 (1) (2) (3)均满足，容易得到 θ̂n是相合的，故 θ̂n−θ0 → 0, n → ∞。
于是将式 4式 5和式 6代入式 3中，结合 Slusky定理

√
n(θ̂n − θ0)

L−→ N(0, I(θ0))

I(θ0)−M · (θ̂n − θ0)
→ N(0, I−1(θ0))

当 n → ∞时，命题证毕。

例 3.2 设 X1, · · · , Xn是取自正态总体 N(µ, σ2)的样本，则 µ, σ2的MLE分别具有渐近正态性。

证明 显然正态分布满足条件 (1) (2) (3)，所以可以使用定理 3.5证明：

(1)在 σ2已知时，µ的MLE为 µ̂ = X̄，由于

f(x;µ) =
1√
2πσ

exp

{
−(x− µ)2

2σ2

}
故有对数概率密度为

log f(x;µ) = −1

2
log 2π − 1

2
log σ2 − (x− µ)2

2σ2

所以

I1(µ, σ
2) = E

[(
∂ log f(x;µ)

∂µ

)2
]
= E

[
(x− µ)2

σ4

]
=

1

σ2

故由定理 3.5可知，
√
n(µ̂− µ)

L−→ N(0, σ2)

即 µ̂的渐近分布为 N(µ, σ2/n)。

(2)在 µ已知时，σ2的MLE为 σ̂2 = 1
n

∑n
i=1(Xi − µ)2，而

I2(µ, σ
2) = E

[(
∂ log f(x; σ2)

∂σ2

)2
]
= E

[(
− 1

2σ2
+

(x− µ)2

2σ4

)2
]
=

1

2σ4

故由定理 3.5可知，
√
n(σ̂2 − σ2)

L−→ N(0, 2σ4)

即 σ̂2的渐近分布为 N(σ2, 2σ4/n)。

4 一致最小均方误差估计

设一参数分布族F = {f(x; θ) : θ ∈ Θ}，其中 Θ为参数空间。设 g(θ)为定义在 Θ上的实函

数，X = (X1, · · · , Xn)为自F 的简单样本，ĝ(X) = ĝ(X1, · · · , Xn)为 g(θ)的一个估计量。
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定义 4.1 (均方误差) 设 ĝ(X)为 g(θ)的估计量，则称Eθ[ĝ(X)−g(θ)]2为 ĝ(X)的均方误差（Mean
Square Error, MSE）。

定义 4.2 (一致最小均方误差估计) 设 ĝ1(X)和 ĝ2(X)为 g(θ)的两个不同的估计量，若

Eθ[ĝ1(X)− g(θ)]2 ≤ Eθ[ĝ2(X)− g(θ)]2 ∀ θ ∈ Θ

且不等号至少对某个 θ ∈ Θ成立，则称在MSE准则下 ĝ1(X)优于 ĝ2(X)。

若存在 ĝ∗(X)，使得对 g(θ)的任一估计量 ĝ(X)，都有

Eθ[ĝ
∗(X)− g(θ)]2 ≤ Eθ[ĝ(X)− g(θ)]2 ∀ θ ∈ Θ

则称 ĝ∗(X)为 g(θ)的一致最小均方误差估计。

可惜的是，一致最小均方误差估计常不存在。从直观上想，在一个大的估计类中，一致最优

估计量不存在，把估计类缩小，就有可能存在一致最优的估计量。我们可以把估计类缩小为无

偏估计类来考虑。

存在这样的情形，参数 g(θ)的无偏估计不存在，如下例：

例 4.1 设样本 X 服从二项分布 B(n, p)时，其中 n己知而 p未知。令 g(p) = 1/p，则参数 g(p)

的无偏估计不存在。

证明 用反证法：若不然，g(p)有无偏估计 ĝ(X)。由于 X 只取 0, 1, · · · , n这些值，而假设 ĝ(X)

无偏，应有

Ep[ĝ(X)] =
n∑

x=0

ĝ(x)

(
n

x

)
px(1− p)n−x =

1

p

即多项式方程
n∑

x=0

ĝ(x)

(
n

x

)
px+1(1− p)n−x − 1 = 0

对任意 p ∈ (0, 1)成立。但这是至多 n+1阶多项式，根据多项式的性质，至多有 n+1个根，显

然无法满足任意 p ∈ (0, 1)均成立，矛盾。

5 一致最小方差无偏估计 UMVUE

定义 5.1 (可估) 参数的无偏估计若存在，则称此参数为可估参数；若参数函数的无偏估计存在，
则称此函数为可估函数（estimable function）。因此可估函数的无偏估计类是非空的。

定义 5.2 (一致最小方差无偏估计 UMVUE) 设 F = {f(x; θ) : θ ∈ Θ}是一个参数分布族，其中
Θ为参数空间，g(θ)为定义在 Θ上的可估函数。设 ĝ∗(X) = ĝ∗(X1, · · · , Xn)为 g(θ)的一个无偏

估计，若对 g(θ)的任一无偏估计 ĝ(X) = ĝ(X1, · · · , Xn)，都有

Varθ[ĝ
∗(X)] ≤ Varθ[ĝ(X)] θ ∈ Θ

则称 ĝ∗(X) 是 g(θ) 的一致最小方差无偏估计（uniformly minimum variance unbiased estimation,
UMVUE）。
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对给定参数分布族，寻找可估函数的 UMVUE有如下的几种方法：

1. 零无偏估计法
2. 充分完全统计量法
3. Cramer-Rao不等式

下列的定理提供了一个改进无偏估计的方法。

定理 5.1 (Rao-Blackwell定理) 设 T = T (X)是一个充分统计量，而 ĝ(X)是 g(θ)的一个无偏估

计，则

h(T ) = E[ĝ(X)|T ]

是 g(θ)的一个无偏估计，并且

Varθ[h(T )] ≤ Varθ[ĝ(X)] θ ∈ Θ

其中等号当且仅当 Pθ(ĝ(X) = h(T )) = 1，即 ĝ(X) = h(T ) a.s. Pθ 成立。

这个定理提供了一个改进无偏估计的方法：即一个无偏估计 ĝ(X)对充分统计量 T (X)的条

件期望 E[ĝ(X)|T ]将能导出一个新的无偏估计，且它的方差不会超过原估计量 ĝ(X)的方差。

这个定理还表明 UMVUE一定是充分统计量的函数，否则可以通过充分统计量，按定理 5.1
的方法构造出一个具有更小方差的无偏估计。

证明 (A)先证 h(T )的无偏性。由 T (X)为充分统计量，按定义，给定 T 时X 的条件分布与 θ

无关。因此 h(T ) = E(ĝ(X)|T )与 θ无关。所以 h(T )是统计量，可作为 g(θ)的估计量，且有

Eθ[h(T )] = Eθ[E(ĝ(X)|T )] = Eθ(ĝ(X)) = g(θ)

（重期望公式）因此 h(T )是 g(θ)的无偏估计。

(B)再证不等式关系成立，即 h(T )的方差不增。注意到

Varθ(ĝ(X)) = Eθ{ĝ(X)− g(θ)}2 = Eθ{[ĝ(X)− h(T )] + [h(T )− g(θ)]}2

= Eθ[ĝ(X)− h(T )]2 +Varθ[h(T )] + 2Eθ{[ĝ(X)− h(T )][h(T )− g(θ)]}

由 h(T ) = E(ĝ(X)|T )，同样由重期望公式

Eθ{[ĝ(X)− h(T )][h(T )− g(θ)]} = Eθ{Eθ[(ĝ(X)− h(T ))(h(T )− g(θ))|T ]}

= Eθ{[h(T )− g(θ)]Eθ[(ĝ(X)− h(T ))|T ]}

= Eθ{[h(T )− g(θ)][E(ĝ(X)|T )− h(T )]} = 0

代回原式可得

Varθ(ĝ(X)) = Eθ[ĝ(X)− h(T )]2 +Varθ[h(T )] ≥ Varθ[h(T )] □

(C)最后证明等号成立条件。等号成立等价于

Eθ[ĝ(X)− h(T )]2 = 0

即 ĝ(X) = h(T ) a.s. Pθ 成立。
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例 5.1 对于 X1, · · · , Xn
i.i.d.∼ B(1, p)的简单随机样本，X1是 p的无偏估计。设 T =

∑n
i=1 Xi，利

用统计量 T 构造具有比 X1估计更小方差的无偏估计。

解答 使用定理 5.1定理，容易构造 h(T )

h(t) = E(X1|T = t) = 1 · P (X1 = 1|T = t) + 0 · P (X1 = 0|T = t)

=
P (X1 = 1, T = t)

P (T = t)
=

P (X1 = 1, X2 + · · ·+Xn = t)

P (T = t)

=
p ·
(
n−1
t−1

)
pt−1(1− p)n−t(

n
t

)
pt(1− p)n−t

=
t

n
= x̄

显然 Var(h(T )) = Var(X̄) = p(1− p)/p < p(1− p) = Var(X1)，当 n > 1时 X̄ 的方差更小，且为

无偏估计。

5.1 充分完全统计量法

定理 5.2 (Lehmann-Scheffe定理) 设X ∼ {f(x; θ) : θ ∈ Θ}，Θ为参数空间。令X = (X1, · · · , Xn)

为从总体 X 中抽取的简单样本，g(θ)为定义于参数空间 Θ上的可估函数，T (X)为一个充分完

全统计量。若 h[T (X)]为 g(θ)的一个无偏估计，则 h[T (X)]是 g(θ)的唯一的 UMVUE。唯一性
是指：设 ĝ和 ĝ1是 g(θ)的两个估计量，若 Pθ(ĝ = ĝ1) = 1，对一切 θ ∈ Θ，则视 ĝ和 ĝ1是同一

个估计量。

证明 先证唯一性。设 ĝ[T (X)], ĝ1[T (X)]为 g(θ)的无偏估计，令 δ[T (X)] = ĝ[T (X)]− ĝ1[T (X)]，

则

Eθ{δ[T (X)]} = Eθ{ĝ[T (X)]} − Eθ{ĝ1[T (X)]} = 0 θ ∈ Θ

由于 T (X)为完全统计量，故 δ[T (X)] = 0 a.s. Pθ成立，即 ĝ[T (X)] = ĝ1[T (X)] a.s. Pθ成立，唯

一性证毕。

再证一致最小方差性。设 φ(X)为 g(θ)的任一无偏估计，记 h[T (X)] = E[φ(X)|T ]。由 T (X)

为充分统计量，故 h[T (X)]与 θ无关，即为统计量。由定理 5.1可知，h[T (X)]也是 g(θ)的无偏

估计，且

Varθ{h[T (X)]} ≤ Varθ{φ(X)} θ ∈ Θ

即 h[T (X)]是最小方差的无偏估计，即 UMVUE，证毕。

例 5.2 设 X1, · · · , Xn
i.i.d.∼ B(1, p)，故容易得 T = T (X) =

∑n
i=1 Xi 服从二项分布 B(n, p)，且 T

为充分完全统计量。求 g(p) = p(1− p)的 UMVUE。

解答 (方法一) 令 φ(X) = I(X1 = 1, X2 = 0)，则有 E[φ(X)] = P (X1 = 1, X2 = 0) = p(1 − p)，

即 φ(X)为 g(p)的无偏估计。又注意到 T =
∑n

i=1 Xi ∼ B(n, p)和
∑n

i=3 Xi ∼ B(n− 2, p)，于是
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可以由定理 5.1定理改进 g(p)的无偏估计

h(t) = E[φ(X)|T = t] = P (X1, X2 = 0|T = t)

=
P (X1 = 1, X2 = 0,

∑n
i=3 Xi = t− 1)

P (T = t)
=

(
n− 2

t− 1

)/(
n

t

)
=

t(n− t)

n(n− 1)

仍然是 g(p)的无偏估计。而 h(T )又是充分完全统计量 T (X)的函数，由定理 5.2可知 h(T )是

g(p)的 UMVUE。

解答 (方法二) 设 δ(T )为 g(p) = p(1− p)的一个无偏估计，从而由 T ∼ B(n, p)可以得到

E[δ(T )] =
n∑

t=0

(
n

t

)
δ(t)pt(1− p)n−t = p(1− p) p ∈ (0, 1)

令 ρ = p(1− p)，故有 p = ρ/(1 + ρ)，代入有

n∑
t=0

(
n

t

)
δ(t)ρt = ρ(1 + ρ)n−2 ρ ∈ (0,∞)

使用二项式公式展开 (1 + ρ)n−2可以得到

n∑
t=0

(
n

t

)
δ(t)ρt =

n−1∑
t=1

(
n− 2

t− 1

)
ρt ρ ∈ (0,∞)

由多项式的性质，比较系数有

δ(t) =


0 t = 0, n(
n− 2

t− 1

)/(
n

t

)
t = 1, · · · , n− 1

既有

δ(T ) =
T (n− T )

n(n− 1)

为 g(p) = p(1− p)的无偏估计，而其为充分统计量的函数，由定理 5.2可知 δ(T )为 UMVUE。

例 5.3 设 X = (X1, · · · , Xn)为从 Poisson分布 Poi(λ)中抽取的简单样本，求

1. g1(λ) = λr, r ∈ N+的 UMVUE。
2. g2(λ) = Pλ(X1 = x)的 UMVUE。

解答 (1) 容易得到 T = T (X) =
∑n

i=1 Xi ∼ Poi(nλ)为充分完全统计量。设 h1(T )为 g1(λ) = λr

的无偏估计，故有

E[h1(T )] =
∞∑
t=0

h1(t)
e−nλ(nλ)t

t!
= λr

将 enλ作 Taylor展开有

λrenλ =
∞∑
l=r

nt−rλt

(t− r)!
=

∞∑
t=0

h1(t)
ntλt

t!
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比较系数可得

h1(T ) =
T (T − 1) · · · (T − r + 1)

nr

且其为 g1(λ) = λr 的无偏估计，又为充分完全统计量的函数，由定理 5.2可知 h1(T )为 g1(λ)的

UMVUE。

解答 (2) 设 φ(X1) = I(X1 = x)，则 Eλ[φ(X1)] = Pλ(X1 = x)，因此 φ(X1)为 g2(λ)的无偏估计。

又注意到 T =
∑n

i=1 Xi ∼ Poi(nλ)和
∑n

i=2 Xi ∼ Poi((n− 1)λ)，故有

h2(t) = E[φ(X1)|T = t] = P (X1 = x|T = t) =
P (X1 = x, T = t)

P (T = t)

=
P (X1 = x)P (

∑n
i=2 Xi = t− x)

P (
∑n

i=1 Xi = t)
=

(n− 1)t−xt!

nt(t− x)!x!

由定理 5.1可知，h2(T )是 g2(λ)的无偏估计。又因为其为充分完全统计量 T 的函数，由定理 5.2
可知 h2(T )是 g2(λ)的 UMVUE。

例 5.4 设X = (X1, · · · , Xn)为从正态分布 N(a, σ2)中抽取的简单随机样本，记 θ = (a, σ2)。求

1. g1(θ) = σr, r > 0的 UMVUE。
2. g2(θ) = a/σ2的 UMVUE。

解答 (1) 容易得 T = (T1, T2) = (X̄,
∑n

i=1(Xi − X̄)2)是 θ的充分完全统计量。又注意到 T2/σ
2 ∼

χ2
n−1，于是

E
(
T2

σ2

)r/2

=

ˆ ∞

0

y
r
2 · 1

2
n−1
2 Γ((n− 1)/2)

y
n−1
2

−1e−
y
2 dy

= 2
r
2 Γ

(
n+ r − 1

2

)/
Γ

(
n− 1

2

)
≜ 1

Kn−1,r

因此构造

h1(T ) = Kn−1,r · T r/2
2 = T

r/2
2 · Γ

(
n− 1

2

)/[
2

r
2Γ

(
n+ r − 1

2

)]
为 σr的无偏估计，又为充分完全统计量 T 的函数，故由定理 5.2可知 h1(T )是 g1(θ)的UMVUE。

解答 (2) 断言：若 Y ∼ χ2
n 则 E(1/Y ) = 1/(n − 2)。注意到 T1 ∼ N(a, σ2/n), T2/σ

2 ∼ χ2
n−1 且

T1 ⊥ T2，故

E
(
T1

T2

)
= E(T1) · E

(
1

T2

)
=

a

(n− 3)σ2

于是构造 h2(T ) = (n− 3)T1/T2即为 g2(θ)的无偏估计，而又是充分完全统计量 T 的函数。故由

定理 5.2可知 h2(T )是 g2(θ)的 UMVUE。
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5.2 零无偏估计法

即使使用充分完全统计量构造无偏估计，配合 Lehmann-Scheffe定理 5.2寻找 UMVUE十分
常见。但仍然存在难以构造的情况，例如无法找到充分完全统计量，构造无偏估计困难等。下

面的例子就展示了这种情况。

例 5.5 设 X1, · · · , Xn
i.i.d.∼ U(0, θ)，但 θ > 1，求 θ的 UMVUE。

解答 这里我们证明：T = X(n)不是 θ的完全统计量。假设 φ(T )满足 E[φ(T )] = 0，即

E[φ(T )] =
ˆ θ

0

φ(t) · nt
n−1

θn
dt = 0

⇒
ˆ 1

0

φ(t)tn−1 dt+

ˆ θ

1

φ(t)tn−1 dt = 0

可以构造 φ(T ) = [(n+ 1)T − n] · I(0,1)(T )就有
ˆ 1

0

φ(t)tn−1 dt+

ˆ θ

1

φ(t)tn−1 dt = tn+1 − tn|10 +
ˆ θ

1

0 · tn−1 dt ≡ 0

于是 φ(T )满足 E[φ(T )] = 0，但 φ(T ) ̸= 0 a.s. P，即 T = X(n)是不完全的。此时无法继续使用

定理 5.2构造 UMVUE。

于是，这里引入求解 UMVUE的另一个方法，即零无偏估计法。

定理 5.3 (零无偏估计法) 设 ĝ(X)是 g(θ)的一个无偏估计，Varθ(ĝ(X)) < ∞，∀ θ ∈ Θ。令

U = {U(X) : Eθ[U(X)] = 0, ∀ θ ∈ Θ}

为零元偏估计的集合。则 ĝ(X)是 g(θ)的 UMVUE的充分必要条件为

Covθ[ĝ(X), U(X)] = Eθ[ĝ(X) · U(X)] = 0 ∀ θ ∈ Θ, ∀ U(X) ∈ U

证明 (A)先证明⇐，即已知 Cov[ĝ(X), U(X)] = 0, ∀ U(X) ∈ U。设 ĝ1(X)为 g(θ)的任一无偏

估计，且 ĝ1(X) ̸= ĝ(X)，记 U(X) = ĝ1(X)− ĝ(X)，则有 E[U(X)] = 0，即 U(X) ∈ U。那么

根据条件有

Var[ĝ1(X)] = Var[ĝ(X) + U(X)] = Var[ĝ(X)] + Var[U(X)] + 2Cov[ĝ(X), U(X)]

= Var[ĝ(X)] + Var[U(X)] ≥ Var[ĝ(X)]

故 ĝ(X)方差最小，且无偏，为 UMVUE。

(B)再证明⇒，即已知 ĝ(X)为 UMVUE。若对任意 U(X) ∈ U，即 E[U(X)] = 0，那么有

ĝ(X) + λ · U(X)仍然无偏，对任意 λ成立。又因为 ĝ(X)为 UMVUE，有

Var[ĝ(X)] ≤ Var[ĝ(X) + λ · U(X)]

⇒Var[ĝ(X)] ≤ Var[ĝ(X)] + λ2Var[U(X)] + 2λCov[ĝ(X), U(X)]

⇒Var[U(X)] · λ2 + 2Cov[ĝ(X), U(X)] · λ ≥ 0 ∀ λ
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注意到这是关于 λ的二次函数，且有根 λ1 = 0使得函数取 0。则另一个根必须为 0，使得函数恒

正，即

λ2 = −2Cov[ĝ(X), U(X)]

Var[U(X)]
= 0

故有 Cov[ĝ(X), U(X)] = 0，命题证毕。

推论 1 设 T = T (X)为 θ的充分统计量，设 h(T ) = h[T (X)]是 g(θ)的一个方差有限的无偏估

计。令 UT 是基于充分统计量 T 的零无偏估计的集合

UT = {U(T ) : Eθ[U(T )] = 0, ∀ θ ∈ Θ}

则 h(T )是 g(θ)的 UMVUE的充分必要条件为

Covθ[h(T ), δ(T )] = Eθ[h(T ) · δ(T )] = 0 ∀ θ ∈ Θ, ∀ δ(T ) ∈ UT

例 5.6 设 X1, · · · , Xn
i.i.d.∼ U(0, θ)，但 θ > 1，求 θ的 UMVUE。

解答 在例 5.5中，无法根据充分完全统计量法求 θ 的 UMVUE，于是，这里使用零无偏估计法
求 θ的 UMVUE。

注意到 T = X(n) 是一个充分统计量。设 U(T )满足 Eθ[U(T )] = 0对任意的 θ > 1成立。根

据例 5.5的结论，有 ˆ 1

0

U(t)tn−1 dt+

ˆ θ

1

U(t)tn−1 dt = 0

对 θ求导有 U(θ) = 0任意的 θ > 1成立。

下面考虑：构造 ĝ(T )使得 Eθ[ĝ(T ), U(T )] = 0，即

ˆ 1

0

ĝ(t)U(t)tn−1 dt+

ˆ 1

0

ĝ(t) · 0 · tn−1 dt = 0 ⇒
ˆ 1

0

ĝ(t)U(t)tn−1 dt = 0

不妨构造

ĝ(T ) = C · I(0,1)(T ) + Bt · I(1,θ)(T )

其中 C,B待定。于是易得
´ 1
0
ĝ(t)U(t)tn−1 dt = 0，即 Eθ[ĝ(T ), U(T )] = 0。继续，寻找 C,B使得

Eθ[ĝ(T )] = θ，即

ˆ 1

0

Cn
tn−1

θn
dt+

ˆ θ

i

Btn
tn−1

θn
dt = θ

⇒ C

θn
+

n

n+ 1
B

(
θ − 1

θn

)
= θ

取B = n+1
n
, C = 1即成立。故根据定理 5.3的推论 1可知，̂g(T ) = I(0,1)(X(n))+

n+1
n
X(n)·I(1,θ)(X(n))

是 g(θ) = θ的 UMVUE。
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5.3 Cramer-Rao不等式

Cramer-Rao不等式是判别一个无偏估计量是否为 UMVUE的主要方法之一。这一方法的思
想如下：设Ug 是 g(θ)的一切无偏估计构成的类。Ug 中估计量的方差有一个下界，如果 g(θ)的

一个无偏估计量 ĝ的方差达到这个下界，则 ĝ就是 g(θ)的一个 UMVUE。

定义 5.3 (C-R正则分布族，C-R正则条件) 若单参数概率函数族F = {f(x; θ) : θ ∈ Θ}满足下
列条件：

(1) 参数空间 Θ是直线上的某个开区间

(2) 对任何 x ∈ X 及 θ ∈ Θ，f(x; θ) > 0，即分布族具有共同支撑

(3) 对任何 x ∈ X 及 θ ∈ Θ，∂f(x; θ)/∂θ存在

(4) 概率函数 f(x; θ)的积分与微分运算可交换，即

∂

∂θ

ˆ
f(x; θ) dx =

ˆ
∂

∂θ
f(x; θ) dx

若 f(x; θ)为离散随机变量的概率分布，上述条件改为无穷级数和微分运算可交换

(5) 下列数学期望存在，且

0 < I(θ) = Eθ

[
∂ log f(X; θ)

∂θ

]2
< ∞

则称该分布族为 C-R正则分布族，其中 (1)-(5)称为 C-R正则条件。I(θ)称为该分布的 Fisher信
息量（或称为 Fisher信息函数）。

5.3.1 单参数 C-R不等式

定理 5.4 (Cramer-Rao不等式) 设 F = {f(x; θ) : θ ∈ Θ}是 C-R正则分布族，g(θ)是定义于参

数空间 Θ上的可微函数。设 X = (X1, · · · , Xn)是由总体 f(x; θ) ∈ F 中抽取的简单随机样本，

ĝ(X)是 g(θ)的任一无偏估计，且满足下列条件

(6) 积分 ˆ
· · ·
ˆ

ĝ(x)f(x; θ) dx

可在积分号下对 θ求导数（此处 dx = dx1 · · · dxn）

则有不等式成立

Varθ[ĝ(X)] ≥ [g′(θ)]2

nI(θ)
∀ θ ∈ Θ

称为 Cramer-Rao不等式，简称 C-R不等式。
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证明 记 S(x; θ) = ∂ log fn(x; θ)/∂θ，其中 fn(x; θ)为联合密度函数。容易得

E[S(x; θ)] = E
[
∂ log fn(x; θ)

∂θ

]
= E

[
n∑

i=1

∂ log f(xi; θ)

∂θ

]
= E

[
n∑

i=1

∂f(xi; θ)

∂θ

1

f(xi; θ)

]

=
n∑

i=1

ˆ
X

∂f(xi; θ)

∂θ
· 1

f(xi; θ)
· f(xi; θ) dxi =

n∑
i=1

ˆ
X

∂f(xi; θ)

∂θ
dxi

=
n∑

i=1

∂

∂θ

ˆ
X

f(xi; θ) dxi =
n∑

i=1

∂

∂θ
1 = 0

又注意到

Varθ[S(x; θ)] = Varθ

[
n∑

i=1

∂ log f(xi; θ)

∂θ

]
=

n∑
i=1

Varθ

[
∂ log f(xi; θ)

∂θ

]
=

n∑
i=1

Eθ

[
∂ log f(xi; θ)

∂θ

]2
= nI(θ)

而

Covθ[ĝ(X), S(X; θ)] = Eθ[ĝ(X) · S(X; θ)] =

ˆ
X

ĝ(x)

[
1

fn(x; θ)

∂fn(x, θ)

∂θ

]
fn(x; θ) dx

=

ˆ
X

ĝ(x)
∂fn(x, θ)

∂θ
dx =

∂

∂θ

ˆ
X

ĝ(x)fn(x, θ) dx

=
∂

∂θ
Eθ[ĝ(X)] =

∂

∂θ
g(θ) = g′(θ)

然后，由 Cauchy-Schwarz不等式

Varθ[ĝ(X)] · Varθ[S(X; θ)] ≥ {Covθ[ĝ(X), S(X; θ)]}2

代入既有

Varθ[ĝ(X)] · [nI(θ)] ≥ [g′(θ)]2

⇒ Varθ[ĝ(X)] ≥ [g′(θ)]2

nI(θ)
∀ θ ∈ Θ □

等号成立条件，由 Cauchy-Schwarz不等式决定。

注 若 g(θ)的无偏估计 ĝ(X)的方差 Varθ[ĝ(X)]达到了 C-R不等式的下界，则一定是 UMVUE；
但未达到下界，不能说明不是 UMVUE。

例 5.7 设X = (X1, · · · , Xn)为从 N(a, σ2)中抽取的简单随机样本，其中 σ2 已知。证明 X̄ 为 a

的 UMVUE。

证明 由正态分布为指数族，C-R正则条件满足。N(a, σ2)的密度函数为

f(x; a) = (2πσ2)−1/2 exp

{
−(x− a)2

2σ2

}
从而，Fisher信息量为

I(a) = Ea

[
∂ log f(X; a)

∂a

]2
= Ea

[
(X − a)2

σ4

]
=

Vara(X)

σ4
=

1

σ2

故 C-R下界为 1/[nI(a)] = σ2/n。而 Var(X̄) = σ2/n达到 C-R下界，且为无偏估计。由定理 5.4
可知，X̄ 是 a的 UMVUE。
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5.3.2 C-R不等式等号成立条件

定理 5.5 (C-R不等式等号成立条件) C-R不等式等号成立条件，需考虑特定的分布族：

1. 若样本分布族非指数族，则其关于 g(θ)的无偏估计之方差一定不能达到C-R下界（∀ θ ∈ Θ）。

2. 若样本分布族为指数族，则其关于 g(θ)的无偏估计之方差不一定能达到C-R下界（∀ θ ∈ Θ）。

只有当样本分布族为指数族 f(x; θ) = C(θ) exp{Q(θ)T (x)}h(x)，且

ĝ(X) = aT (X) + b Eθ[ĝ(X)] = Eθ[aT (X) + b] = g(θ)

此时方可取到 C-R下界，其中 a ̸= 0和 b是与 θ无关的常数。

评论 非指数族⇒一定不能达到 C-R下界；指数族⇒不一定能达到 C-R下界。

证明 由 Cauchy-Schwarz不等式的取等条件，Cramer-Rao不等式取等，即有

S(X; θ) = a(θ)ĝ(X) + b(θ) a(θ) ̸= 0

下面，我们断言：

S(X; θ) = a(θ)ĝ(X) + b(θ) ⇔ fn(X; θ) = C(θ) exp{Q(θ)ĝ(X)}h(X)

其中 fn(X; θ)为概率密度函数。

(A)先证⇒。注意到 S(X; θ) = ∂ log fn(X; θ)/∂θ，于是对任意 θ ∈ Θ，作积分ˆ θ

θ0

S(X; θ) dθ =

ˆ θ

θ0

∂ log fn(X; t)

∂θ
dt = ĝ(X)

ˆ θ

θ0

a(t) dt+

ˆ θ

θ0

b(t) dt

⇒ log fn(X; θ)− log fn(X; θ0) := Q(θ)ĝ(X) + R(θ)

⇒ fn(X; θ) = eR(θ) exp{Q(θ)ĝ(X)}fn(X; θ0)

其中 Q(θ) =
´ θ
θ0
a(t) dt, R(θ) =

´ θ
θ0
b(t) dt。于是 fn(X; θ)能写成指数族的形式，证毕。

(B)再证⇐。已知 fn(X; θ)，于是可求 S(X; θ)

S(X; θ) =
∂ log fn(X; θ)

∂θ
=

∂

∂θ
[logC(θ) +Q(θ)ĝ(X) + log h(X)]

=
∂ logC(θ)

∂θ
+Q′(θ)ĝ(X) ≜ a(θ)ĝ(X) + b(θ)

其中 a(θ) = Q′(θ) ̸= 0, b(θ) = ∂ logC(θ)/∂θ，证毕。

例 5.8 设X = (X1, · · · , Xn)为自 Poisson分布 Poi(λ)中抽取的简单样本。证明只有 g(λ)是 λ的

线性函数时，才存在 g(λ)的无偏估计，其方差能处处达到 C-R下界（即 ∀ θ ∈ Θ）。

证明 样本X = (X1, · · · , Xn)的联合概率函数为

f(x;λ) =
n∏

i=1

f(xi;λ) =
λ
∑n

i=1 xie−nλ

x1! · · · xn!

=
e−nλ exp{nx̄ log λ}

x1! · · · xn!

= C(λ) exp{Q(λ)T (x)}h(x)
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为指数族，其中 C(λ) = e−nλ, Q(λ) = log λ, T (x) = nx̄ =
∑n

i=1 xi, h(x) = 1/(x1! · · · xn!)。由

C-R不等式取等条件，即定理 5.5可知，只有当

g(λ) = Eλ[aT (X) + b] = aEλ[
∑n

i=1
xi] + b = an · λ+ b

为 λ 的线性函数时，无偏估计 ĝ(X) = aT (X) + b 的方差才能达到 C-R 下界，且为 g(λ) 的

UMVUE。

例如：取 g(λ) = λ，此时取 a = 1/n, b = 0，就有 ĝ(X) = X̄ 为 UMVUE。

5.3.3 多参数 C-R不等式

定理 5.6 (多参数 C-R 不等式) 设 θ = (θ1, · · · , θk) ∈ Rk，总体概率函数记作 f(x;θ)，设 X =

(X1, · · · , Xn)是从总体 f(x;θ)中抽取的简单随机样本。设 θ̂ = θ̂(X) = (θ̂1, · · · , θ̂k) ∈ Rk是 θ的

一个无偏估计。记 Covθ(θ̂)为 θ̂的协方差阵

Covθ(θ̂) = Eθ

[
(θ̂ − θ)(θ̂ − θ)T

]
∈ Rk×k

为非负定阵。则此时的 Cramer-Rao不等式为

Covθ(θ̂) ≥ [nI(θ)]−1

其中 I(θ)是总体的 Fisher信息矩阵

I(θ) = Eθ

[(
∂ log f(X;θ)

∂θ

)(
∂ log f(X;θ)

∂θ

)T
]
∈ Rk×k

特别地，若记 I∗(θ) = [I(θ)]−1，则有

Varθ(θ̂i) ≥
I∗
ii(θ)

n
i = 1, 2, · · · , k (7)

其中 I∗
ii(θ)表示 I∗(θ)的第 i个对角元素。

注 Fisher信息矩阵还可以表示为

I(θ) = Eθ

[
−
(
∂2 log f(X;θ)

∂θ∂θT

)]
∈ Rk×k

注 式 7成立，需要证明如下结论

A ≥ 0 ⇒ Aii ≥ 0

这个结论是显然的：由非负定的性质，任意向量v都有vAvT ≥ 0。只要取v = ei = (0, · · · , 1, · · · , 0)，
其中 ei表示第 i个分量为 1，其他分量为 0。于是有 eiAeT

i = Aii ≥ 0，证毕。

例 5.9 设 X = (X1, · · · , Xn)为从正态总体 N(a, σ2)中抽取的简单样本，记 θ = (a, σ2)，其中

θ1 = a, θ2 = σ2。求 θ 的两个分量无偏估计方差的 C-R下界，并将其与 θ1 和 θ2 的无偏估计 X̄

和 S2的方差进行比较。
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解答 正态随机变量的密度函数为

f(x;θ) = (2πθ2)
−1/2 exp

{
−(x− θ1)

2

2θ2

}
可知

∂ log f(x;θ)

∂θ1
=

x− θ1
θ2

∂ log f(x;θ)

∂θ2
=

−θ2 + (x− θ1)
2

2θ22

由此计算信息矩阵

I11(θ) =
1

σ2
I22(θ) =

1

2σ4
I12(θ) = I21(θ) = 0

故有

nI(θ) =

 n

σ2
0

0
n

2σ4

 [nI(θ)]−1 =

σ2

n
0

0
2σ4

n


记 θ̂1 = X̄, θ̂2 = S2，则由 Cramer-Rao不等式可知

Covθ(θ̂) = Covθ

(
θ̂1

θ̂2

)
≥

σ2

n
0

0
2σ4

n


注意到Varθ(θ̂1) = σ2/n达到 C-R下界，故 θ̂1 = X̄是 θ1 = a的 UMVUE。而根据 (n−1)S2/σ2 ∼
χ2
n−1知

Varθ(θ̂2) = 2(n− 1) · σ4

(n− 1)2
=

2σ4

n− 1
>

2σ4

n

故 θ̂2 = S2的方差大于 C-R下界，不是 θ2 = σ2的 UMVUE。

5.3.4 有效估计和估计的效率

定义 5.4 (有效估计) 设 ĝn(X)是 g(θ)的无偏估计，则比值

eĝn(θ) =
[g′(θ)]2/[nI(θ)]

Varθ[ĝn(X)]

称为无偏估计 ĝn(X)的效率（efficiency）。显然 0 < eĝn(θ) ≤ 1，当 eĝn(θ) = 1时，称 ĝn(X)是

g(θ)的有效估计（effective estimation）。若 ĝn(X)不是 g(θ)的有效估计，但 limn→∞ eĝn(θ) = 1，

则称 ĝn(X)是 g(θ)的渐近有效估计（asymptotically effective estimation）。

例 5.10 设X = (X1, · · · , Xn)是从 N(a, σ2)中抽取的简单随机样本。

1. 当 a未知时，证明样本方差 S2不是 σ2的有效估计，但是渐近有效估计。

2. 当 a已知时，求 σ2的有效估计。

证明 (1) 当 a未知时，由例 5.9可知 S2的方差为 2σ4/(n− 1)达不到 C-R下界 2σ4/n，故不是有

效估计。估计的效率为 eS2(σ2) = (n− 1)/n < 1，但是

lim
n→∞

eS2(σ2) = lim
n→∞

n− 1

n
= 1

故 S2是 σ2的渐近有效估计。
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解答 (2) 当 a已知，设 S2
n =

∑n
i=1(Xi − a)2/n，容易得 nS2

n/σ
2 ∼ χ2

n，于是有

Var(S2
n) =

σ4

n2
· Var

(
nS2

n

σ2

)
=

σ4

n2
· 2n =

2σ4

n

达到了 C-R下界，故此时 σ2的 UMVUE为 S2
n。

例 5.11 设X = (X1, · · · , Xn)是从下列舍有位置参数的指数分布族中抽取的简单样本，

f(x; θ) = e−(x−a) · I(x > a)

求 a的 UMVUE。

解答 容易证 X(1)是 a的充分完全统计量，且密度函数为 fX(1)
(x) = ne−n(x−a) · I(x > a)，于是

Ea(X(1)) = n

ˆ ∞

a

xe−n(x−a) dx = a+
1

n

故 X(1) − 1/n是 a的无偏估计，由 Lehmann-Scheffe定理 5.2可知 X(1) − 1/n是 a的 UMVUE。

但是，概率函数 fn(x; a) = exp{−
∑n

i=1(xi − a)} · I(x(1) > a)的支撑集 {x : fn(x; a) > 0} =

{x : ∀ xi > a}与参数 a有关。所以，不满足 C-R正则条件，不能讨论有效性。
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