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1 特征函数和矩母函数

1.1 特征函数

1.1.1 特征函数的定义

定义 1.1 (特征函数) 设 X 是一个随机变量，称

φ(t) = E(eitX), t ∈ R, (1)

为 X 的特征函数。其中 i 为虚数单位，满足 i2 = −1。

当离散型随机变量 X 的分布列为 pk = P (X = xk), k = 1, 2, · · ·，则 X 的特征函数为

φ(t) =
∞∑
k=1

eitxkpk, −∞ < t < ∞. (2)

当连续随机变量 X 的密度函数为 p(x)，则 X 的特征函数为

φ(t) =

ˆ ∞

−∞
eitxp(x) dx, −∞ < t < ∞. (3)

定义 1.2 特别地，对于随机向量 X ∈ Rp，其中 p 为随机向量的分量数，或 X 的维度。则此时，

特征函数定义为

φ(t) = E(eitTX), t ∈ Rp (4)

1.1.2 特征函数的性质

现在研究特征函数函数的性质，其中 φX(t) 表示 X 的特征函数，其他类似。

命题 1.1 若 Y = aX + b，其中 a, b 为常数，则

φY (t) = eibt · φX(at) (5)

证明 φY (t) = E(eit(aX+b)) = eibt · E(ei(at)X) = eibt · φX(at).
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命题 1.2 独立随机变量和的特征函数为每个随机变量的特征函数的积，即设 X 与 Y 相互独立，

则

φX+Y (t) = φX(t) · φY (t) (6)

证明 因为 X 与 Y 相互独立，所以 eitX 和 eitY 也相互独立，从而有

φX+Y (t) = E(eit(X+Y )) = E(eitX · eitY ) = E(eitX) · E(eitY ) = φX(t) · φY (t)

命题 1.3 特征函数唯一确定密度函数：若 X 为连续随机变量，其密度函数为 p(x)，特征函数为

φ(t)。若
´∞
−∞ |φ(t)| dt < ∞，则

p(x) =
1

2π

ˆ ∞

−∞
e−itxφ(t) dt (7)

证明 详见《概率论与数理统计教程》（茆诗松等）定理 4.2.4（唯一性定理）。

1.1.3 正态分布的特征函数

定义 1.3 (正态分布) 若随机向量 X 满足如下特征函数

φX(t) = E
{
exp

(
itTX

)}
= exp

(
iµT t− 1

2
· tTΣt

)
(8)

其中 X, t, µ ∈ Rp 为 p 维向量，Σ ∈ Rp×p 为 p× p 的矩阵。则称 X 服从 p维正态分布，期望为 µ，

协方差矩阵为 Σ，记作 X ∼ Np(µ,Σ)。

1.2 矩母函数

1.2.1 矩母函数的定义

定义 1.4 设随机变量 X 的分布为 F (x)，其矩母函数定义为

MX(t) = E(etX), t ∈ R,

类似地，当 X 为随机向量时 X ∈ Rp，矩母函数的 t 也是向量 t ∈ Rp。

注 对于 r.v. X 的矩母函数，有

MX(0) = 1

不是所有随机变量都存在矩母函数。
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1.2.2 矩母函数的性质

命题 1.4 对于随机变量 X，它的特征函数为 φX(t) = E(eitX)，矩母函数为 MX(t) = E(etX)，则

有

MX(t) = φX(−it)

若矩母函数存在时，上面的关系总成立。

命题 1.5 对于随机变量 X，它的矩母函数为 MX(t)，若 MX(t) 在 t = 0 可导，则有

M
(n)
X (0) = E(Xn)

即，矩母函数的第 n 阶导数在零点给出随机变量的 n 阶原点矩。

2 正态总体样本均值和样本方差分布

2.1 正态变量线性函数的分布

定理 2.1 设随机变量X1, X2, · · · , Xn 相互独立且Xk ∼ N(ak, σ
2
k), k = 1, 2, · · · , n.令 c1, c2, · · · , cn

为常数，则有

T =
n∑

k=1

ckXk ∼ N(µ, τ 2) (9)

其中 µ =
∑n

k=1 ckak 而 τ 2 =
∑n

k=1 c
2
kσ

2
k。

证明 由 Xk ∼ N(ak, σ
2
k), k = 1, 2, · · · , n 故其特征函数为

φk(t) = E(eitXk) = exp

(
iakt−

1

2
t2σ2

k

)
所以 T 的特征函数为

φT (t) = E(eitT ) = E

[
exp

(
it

n∑
k=1

ckXk

)]
=

n∏
k=1

E [exp (i(ckt)Xk)]

=
n∏

k=1

exp

(
ickakt−

1

2
t2c2kσ

2
k

)
= exp

[
it

(
n∑

k=1

ckak

)
− 1

2
t2

(
n∑

k=1

c2kσ
2
k

)]

= exp

(
itµ− 1

2
t2τ 2

)
可见 T ∼ N(µ, τ 2)，定理证毕。

推论 1 在定理 2.1 中，若取 ak = a, σ2
k = σ2，则有

T ∼ N

(
a

n∑
k=1

ck, σ
2

n∑
k=1

c2k

)
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推论 2 在推论 1 中，继续取 ck = 1/n，即X1, X2, · · · , Xn
i.i.d.∼ N(a, σ2)，而 T =

∑n
k=1 Xn/n = X̄，

有

X̄ ∼ N

(
a,

σ2

n

)
下面，针对随机向量 X，我们推导更一般的定理。

定理 2.2 随机向量 X ∼ Np(µ, Σ)，其中 X,µ ∈ Rp, Σ ∈ Rp×p。存在非奇异阵 A ∈ Rp×p，使得

Y = AX ∈ Rp，则有

Y = AX ∼ Np(Aµ, AΣA
T ) (10)

证明 由 X ∼ Np(µ, Σ)，故其特征函数为

φX(t) = E
{
exp

(
itTX

)}
= exp

(
iµT t− 1

2
· tTΣt

)
而 Y = AX，所以 Y 的特征函数为

φY (t) = φAX(t) = E
{
exp

(
itTAX

)}
= E

{
exp

(
i(AT t)TX

)}
= exp

(
iµT (AT t)− 1

2
· (AT t)TΣ(AT t)

)
= exp

(
i(Aµ)T t− 1

2
· tT (AΣAT )t

)
服从正态分布的特征函数，所以 Y = AX ∼ Np(Aµ, AΣA

T )，定理证毕。

证明 使用密度函数证明。由 X ∼ Np(µ, Σ)，故其概率密度函数为

fX(x) = (2π)−
p
2 |Σ|−

1
2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
又 ∵ A 是非奇异的，故 A−1 存在，所以 X = A−1Y，且 Jacobi 阵为

∂X

∂Y
= A−1

于是，根据卷积公式，可以得到 Y 的密度函数

fY (y) = fX(A
−1y)|A−1| = (2π)−

p
2 |Σ|−

1
2 exp

{
−1

2
(A−1y − µ)TΣ−1(A−1y − µ)

}
|A−1|

= (2π)−
p
2 |AΣAT |−

1
2 exp

{
−1

2
(y − Aµ)T (A−1)TΣ−1A−1(y − Aµ)

}
= (2π)−

p
2 |AΣAT |−

1
2 exp

{
−1

2
(y − Aµ)T (AΣAT )−1(y − Aµ)

}
上面的变化用到了 (AB)T = BTAT，(AB)−1 = B−1A−1，|A| = |AT | 和 |A−1| = |A|−1。

注意到 fY (y) 也服从正态分布的密度函数，于是 Y = AX ∼ Np(Aµ, AΣA
T )，定理证毕。

注 这里的 |Σ| 指数为负数，所以要求 Σ 是正定的（Σ > 0），但我们的第一个证明可以发现，在

特征函数定义的正态分布中，对 Σ 只有半正定的约束（Σ ≥ 0）。

推论 3 特别地，在定理 2.2 中，若 µ = 0为零向量，Σ = Ip 为 p阶单位阵，A为正交阵（AAT = Ip），

则有 Y = AX ∼ Np(0, Ip)。
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2.2 正态变量样本均值和样本方差的分布

定理 2.3 设 n 个服从正态分布的样本 X1, X2, · · · , Xn
i.i.d.∼ N(a, σ2) 记样本均值为 X̄ = 1

n

∑n
i=1 Xi

和样本方差为 S2 = 1
n−1

∑n
i=1(Xi − X̄)2 则有：

(1) X̄ ∼ N(a, σ2/n)

(2) (n− 1)S2/σ2 ∼ χ2
n−1

(3) X̄ 和 S2 相互独立。

此处的 χ2
n−1 表示自由度为 n− 1 的卡方分布。

证明 (1) 由推论 2，易证 X̄ ∼ N(a, σ2/n)。

证明 (2) 构造一个正交阵 A 形如

A =



1√
n

1√
n

· · · 1√
n

a21 a22 · · · a2n
... ... . . . ...

an1 an2 · · · ann


n×n

这一正交阵的存在性可由 Schmidt 正交化方法保证。

作正交变换 Y = AX，其中X = (X1, X2, · · · , Xn)
T , Y = (Y1, Y2, · · · , Yn)

T，于是X,Y ∈ Rn。

于是有

Y1 =
1√
n

n∑
i=1

Xi =
√
nX̄

由于正交变换的长度不变性，有

Y 2
1 + Y 2

2 + · · ·+ Y 2
n = X2

1 +X2
2 + · · ·+X2

n

即

Y TY = (AX)T (AX) = XTATAX = XTX

所以，

(n− 1)S2 =
n∑

i=1

(Xi − X̄)2 =
n∑

i=1

Xi − nX̄2

=
n∑

i=1

Yi − Y 2
1 =

n∑
i=2

Yi

而注意到由定理 2.2 可知，Y = AX ∼ Nn(Aµ, AΣA
T )，其中 µ = (a, a, · · · , a)T ∈ Rn 为 X 的均

值，而 Σ = σ2In ∈ Rn×n 为 X 的协方差阵。

于是 Y 的协方差阵 AΣAT = Aσ2InA
T = σ2AAT = σ2I 为对角阵。多元正态分布的协方差

阵为对角阵，则随机向量的各分量相互独立。于是 Yi ∼ N(µi, σ
2)，其中 µi 为 Aµ 的第 i 个分量。
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而由 A 的正交性，有

µi = a

n∑
k=1

aik =
√
na

n∑
k=1

1√
n
· aik = 0, i ≥ 2

因为倒数第二个式子即为 A 的第一行点乘第 i 行。或：正交阵有 Ai · A1 = 0, i ≥ 1，其中 Ai 代

表 A 的第 i 行，于是有 E(Yi) = AiE(X) = Ai(a, a, · · · , a) = Aia
√
nA1 = 0。

于是，我们得到 Y2, Y3, · · · , Yn
i.i.d.∼ N(0, σ2)，故 Y2/σ, Y3/σ, · · · , Yn/σ

i.i.d.∼ N(0, 1)，所以由卡

方分布的定义，可知
(n− 1)S2

σ
=

n∑
i=2

(
Yi

σ

)2

∼ χ2
n−1

故 (2) 证毕。

证明 (3) 由 (2) 的证明过程可知，Y1, Y2, · · · , Yn 相互独立，X̄ 只与 Y1 有关，S2 只与 Y2, Y3, · · · , Yn

有关。所以 X̄ 和 S2 相互独立，故 (3) 证毕。

3 χ2分布，t分布和 F 分布

3.1 χ2分布

3.1.1 χ2分布的定义及 Γ分布

定义 3.1 (χ2分布) 设 X1, X2, · · · , Xn
i.i.d.∼ N(0, 1)，则称

ξ =
n∑

i=1

X2
i

是自由度为 n 的 χ2 变量，其分布称为自由度为 n 的 χ2分布，记作 ξ ∼ χ2
n。

χ2 变量的概率密度函数由下面的定理给出。

定理 3.1 设随机变量 ξ 是自由度 n 的 χ2 随机变量，则其概率密度函数为

gn(x) =


1

2n/2 · Γ(n/2)
· xn/2−1e−x/2, x > 0,

0, x ≤ 0.

证明 由于 X1, X2, · · · , Xn
i.i.d.∼ N(0, 1)，故其联合密度函数为

f(x1, x2, · · · , xn) =

(
1√
2π

)n

exp

{
−1

2

n∑
i=1

x2
i

}
令 r.v. ξ =

∑n
i=1 X

2
i 的分布函数为 Gn(x) 则有

Gn(X) = P (
n∑

i=1

X2
i ≤ x) =

(
1√
2π

)n ˆ
· · ·
ˆ

∑n
i=1 X

2
i <x

exp

{
−1

2

n∑
i=1

x2
i

}
dx1dx2 · · · dxn
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作 n 维球坐标变换 

x1 = ρ cos θ1 cos θ2 · · · cos θn−2 cos θn−1

x2 = ρ cos θ1 cos θ2 · · · cos θn−2 sin θn−1

x3 = ρ cos θ1 cos θ2 · · · sin θn−2

· · · · · ·

xn−1 = ρ cos θ1 sin θ2

xn = ρ sin θ1

变换的 Jacobi 行列式的绝对值为

| det J | =
∣∣∣∣ ∂(x1, x2, · · · , xn)

∂(ρ, θ1, · · · , θn−1)

∣∣∣∣ = ρn−1D(θ1, θ2, · · · , θn−1)

其中D(θ1, θ2, · · · , θn−1)代表 θ1, θ2, · · · , θn−1 的某个函数。且 0 < ρ <
√
x；−π/2 < θi < π/2, i ≤

n− 2；−π < θn−1 < π 因此有

Gn(x) =

(
1√
2π

)n ˆ √
x

0

ρn−1e−
ρ2

2 dρ

ˆ π

−π

ˆ π/2

−π/2

· · ·
ˆ π/2

−π/2

D(θ1, θ2, · · · , θn−1) dθ1 · · · dθn−1

= Cn

ˆ √
x

0

ρn−1e−
ρ2

2 dρ

其中

Cn =

(
1√
2π

)n ˆ π

−π

ˆ π/2

−π/2

· · ·
ˆ π/2

−π/2

D(θ1, θ2, · · · , θn−1) dθ1 · · · dθn−1

令 y = ρ2，则 dρ = 1/(2
√
y) dy，故有

Gn(x) =
1

2
Cn

ˆ x

0

y
n
2
−1e−

y
2 dy (11)

下面确定 Cn，由于

1 = Gn(+∞) =
1

2
Cn

ˆ +∞

0

y
n
2
−1e−

y
2 dy = Cn2

n
2
−1Γ(

n

2
)

于是有 Cn = 1/[2
n
2
−1Γ(n

2
)]，代回式 11 有

Gn(x) =
1

2n/2Γ(n/2)

ˆ x

0

y
n
2
−1e−

y
2 dy

因此 ξ 的密度函数为

gn(x) =
∂Gn

∂x
=


1

2n/2 · Γ(n/2)
· xn/2−1e−x/2, x > 0,

0, x ≤ 0.

（当 n ≤ 0 时，情况平凡）定理证毕。
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3.1.2 Γ函数和 Beta函数

定义 3.2 (Γ函数) 上面出现的 Γ(·) 为 Gamma函数，其积分形式为

Γ(x) =

ˆ ∞

0

tx−1e−t dt

有关 Gamma 函数的性质：

(1) Γ(1) = 1，Γ(1/2) =
√
π

(2) Γ(x+ 1) = x · Γ(x)
(3) Γ(n) = (n− 1)!，其中 n ∈ N+

证明 使用数学归纳法证明。

(1) 当 n = 1 时，ξ = X2
1，于是 ξ 的分布函数为

G1(x) = P (X2
1 ≤ x) = P (−

√
x ≤ X1 ≤

√
x) =

ˆ √
x

−
√
x

1√
2π

e−
x21
2 dx1

由于被积函数 1√
2π
e−

x21
2 为偶函数，故我们有 ξ 的密度函数为

g1(x) =
∂G1

∂x
= 2(

1√
2π

e−
x
2 )(

1

2
x− 1

2 ) =
1√
2π

x− 1
2 e−

x
2 =

1

21/2Γ(1/2)
x− 1

2 e−
x
2

所以 n = 1 时结论成立。

(2) 假设 n = k 时成立，即

gk(x) =
1

2k/2Γ(k/2)
xk/2−1e−x/2

(3) 当 n = k+1 时，令 ξk =
∑k

i=1 X
2
i , η = X2

k+1，则 ξk+1 = ξk + η。由 n = 1, k 时命题成立，

所以 η = X2
k+1 的密度函数为 g1(x)，ξk 的密度函数为 gk(x)。于是有

Gk+1(x) = P (ξk+1 ≤ x) = P (ξk + η ≤ x)

=

¨
ξk+η≤x

gk(ξk)g1(η) dξkdη =

ˆ x

0

(ˆ x−η

0

gk(ξk) dξk

)
g1(η) dη

=

ˆ x

0

Gk(x− η)g1(η) dη

于是有 ξk+1 的密度函数为

gk+1(x) =
∂Gk+1

∂x
=

ˆ x

0

gk(x− η)g1(η) dη

=

ˆ x

0

1

2k/2Γ(k/2)
(x− η)k/2−1e−(x−η)/2 1

21/2Γ(1/2)
η−1/2e−η/2 dη

=
1

2(k+1)/2Γ(k/2)Γ(1/2)
e−x/2

ˆ x

0

(x− η)k/2−1η−1/2 dη
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对积分做换元 η = xt, t ∈ [0, 1]，从而 dη = xdt，于是有

ˆ x

0

(x− η)k/2−1η−1/2 dη =

ˆ 1

0

xk/2−1(1− t)k/2−1(xt)−1/2x dt = x(k+1)/2−1

ˆ 1

0

(1− t)k/2−1t−1/2 dt

注意到 Beta 函数的定义，上式可写作

x(k+1)/2−1

ˆ 1

0

(1− t)k/2−1t−1/2 dt = x(k+1)/2−1B(
1

2
,
k

2
) = x(k+1)/2−1Γ(

1
2
)Γ(k

2
)

Γ(k+1
2
)

代回式 gk+1(x) 中得到

gk+1(x) =
1

2(k+1)/2Γ(k/2)Γ(1/2)
e−x/2

ˆ x

0

(x− η)k/2−1η−1/2 dη

=
1

2(k+1)/2Γ(k/2)Γ(1/2)
e−x/2x(k+1)/2−1Γ(

1
2
)Γ(k

2
)

Γ(k+1
2
)

=
1

2(k+1)/2Γ((k + 1)/2)
x(k+1)/2−1e−x/2

正是所需的形式。

由数学归纳法，命题对所有正整数 n 成立（当 n ≤ 0 时，情况平凡），证毕。

定义 3.3 (Beta函数) 上面出现的 B(·, ·) 为 Beta函数，其积分形式为

B(a, b) =

ˆ 1

0

ta−1(1− t)b−1 dt =
Γ(a)Γ(b)

Γ(a+ b)
, t ∈ (0, 1)

更多结论详见《概率论与数理统计教程》（茆诗松等）章节 2.5.5 贝塔分布。

定义 3.4 (Γ分布) 若随机变量 X 满足如下概率密度函数

p(x;α, λ) =


λα

Γ(α)
xα−1e−λx, x > 0,

0, x ≤ 0.

则称 X 满足 Γ分布，记作 X ∼ Γ(α, λ)。

命题 3.2 Γ 分布的 2 个特例：

自由度为 n 的 χ2 分布与 Γ 分布的关系为

χ2
n = Γ

(
n

2
,
1

2

)
指数分布于 Γ 分布的关系为

Exp(λ) = Γ (1, λ)

命题 3.3 若 r.v. X 服从 Γ 分布，即 X ∼ Γ(α, λ)，则 X 的期望和方差为

E(X) =
α

λ
, var(X) =

α

λ2

11



证明 期望为

E(X) =
λα

Γ(α)

ˆ ∞

0

xαe−λx dx =
λα

λα+1Γ(α)

ˆ ∞

0

(λx)(α+1)−1e−λx dλx

=
1

λ

Γ(α + 1)

Γ(α)
=

α

λ

同理，二阶矩为

E(X2) =
λα

Γ(α)

ˆ ∞

0

xα+1e−λx dx =
λα

λα+2Γ(α)

ˆ ∞

0

(λx)(α+2)−1e−λx dλx

=
1

λ2

Γ(α + 2)

Γ(α)
=

α(α + 1)

λ2

于是，方差为

var(X) = E(X2)− (E(X))2 =
α(α + 1)

λ2
−
(α
λ

)2
=

α

λ2

综上，命题证毕。

命题 3.4 若 r.v. Y ∼ Γ(α, λ)，则 Z = 2λY ∼ χ2
2α

证明 若 Y ∼ Γ(α, λ)，其概率密度函数为

fY (y) =
λα

Γ(α)
yα−1e−λy, y > 0.

设 Z = 2λY，则有

y =
z

2λ
,

dy

dz
=

1

2λ

因此，Z 的密度函数为

fZ(z) = fY (
z

2λ
) · 1

2λ
, z > 0.

代入有

fZ(z) =
λα

Γ(α)

( z

2λ

)α−1

e−λ·( z
2λ) · 1

2λ

=
1

2αΓ(α)
zα−1e−z/2 =

(1
2
)α

Γ(α)
zα−1e−

1
2
z

= fΓ(α, 12)
(z)

综上 Z = 2λY ∼ Γ
(
α, 1

2

)
= χ2

2α，命题证毕。

3.1.3 χ2分布的性质

命题 3.5 χ2
n 的密度函数 gn(x) 满足：

当 n = 1, 2 时，曲线是单调下降趋于 0 的，即

g′n(x) ≤ 0, n = 1, 2
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当 n ≥ 3 时，曲线有单峰，从 0 开始先单调上升，达到峰值后，单调下降趋于 0。

命题 3.6 设 r.v. ξ ∼ χ2
n，则 ξ 的特征函数为

φξ(t) = (1− 2it)−
n
2

证明 因为 ξ ∼ χ2
n，则 ξ ∼ Γ

(
n
2
, 1
2

)
其密度函数为

fξ(x) =
(1/2)n/2

Γ(n/2)
xn/2−1e−x/2, x > 0.

于是，根据特征函数的定义，有

φξ(t) = E(eitξ) =
ˆ ∞

0

eitxfξ(x) dx =
(1/2)n/2

Γ(n/2)

ˆ ∞

0

xn/2−1e−(1/2−it)x dx.

注意积分为 Γ 函数的形式，即 ˆ ∞

0

xα−1e−βx dx =
Γ(α)

βα

此处 α = n/2, β = 1/2− it，代入可得

φξ(t) =
(1/2)n/2

Γ(n/2)
· Γ(n/2)

(1/2− it)n/2
=

(
1/2

1/2− it

)n
2

= (1− 2it)−
n
2

命题证毕。

注 或者可以采用 ξ =
∑n

i=1 X
2
i ，其中 Xi

i.i.d.∼ N(0, 1)。然后根据 Xi 标准正态分布的密度函数，

计算 X2
i 的特征函数。最后由命题 1.2 有关独立随机变量和的特征函数性质可证。

命题 3.7 设 r.v. ξ ∼ χ2
n，则 ξ 的期望和方差分别为

E(ξ) = n var(ξ) = 2n

证明 由 Γ 分布的命题 3.2 可知，χ2 分布是 Γ 分布的特例，即 ξ ∼ χ2
n = Γ(n/2, 1/2)。且对于 Γ

分布 Γ(α, λ)，其期望和方差为（由命题 3.3）

E(X) =
α

λ
, var(X) =

α

λ2

于是 χ2 分布的期望和方差为

E(ξ) =
n/2

1/2
= n var(ξ) =

n/2

(1/2)2
= 2n

命题证毕。

命题 3.8 设 Z1 ∼ χ2
n1
, Z2 ∼ χ2

n2
，且 Z1 和 Z2 相互独立。则有 Z1 + Z2 ∼ χ2

n1+n2
。

证明 根据特征函数证明。由 χ2 分布的特征函数可知

φZ1(t) = (1− 2it)−
n1
2 φZ2(t) = (1− 2it)−

n2
2

因为 Z1 ⊥ Z2，由命题 1.2 知

φZ1+Z2(t) = φZ1(t) · φZ2(t) = (1− 2it)−
n1
2 · (1− 2it)−

n2
2 = (1− 2it)−

n1+n2
2

恰好为 χ2
n1+n2

的特征函数。所以，Z1 + Z2 ∼ χ2
n1+n2

，命题证毕。
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证明 根据定义证明。根据 χ2 分布的定义，可知 Z1 和 Z2 可以分别写作 n1, n2 个标准正态随机

变量的平方和。不妨设

Z1 =

n1∑
i=1

X2
i Z2 =

n2∑
j=1

Y 2
i

其中 Xi, Yj
i.i.d.∼ N(0, 1), i = 1, 2, · · · , n1, j = 1, 2, · · · , n2。于是有

Z1 + Z2 =

n1∑
i=1

X2
i +

n2∑
j=1

Y 2
i ∼ χ2

n1+n2

由 χ2 分布的定义可知，证毕。

3.1.4 非中心 χ2分布

定义 3.5 设随机变量 X1, X2, · · · , Xn 相互独立，且 Xi ∼ N(ai, 1) 其中 ai, i = 1, 2, · · · , n 不全为

0。记

Y =
n∑

i=1

X2
i

则称 Y 的分布是自由度为 n 和非中心参数为

δ =

√√√√ n∑
i=1

a2i

的非中心 χ2分布，记作 Y ∼ χ2
n,δ。特别地，当 δ = 0 时称为中心的 χ2 分布，即前面所述的 χ2

n

分布。

命题 3.9 若 r.v. Y ∼ χ2
n,δ，则其概率密度函数为

g(x) =


e−δ2/2

∞∑
i=1

1

i!

(
δ2

2

)i
xi+n/2−1

2i+n/2Γ(n/2 + i)
, x > 0

0, x ≤ 0

=


e−δ2/2

∞∑
i=1

(δ2/2)i

i!
χ2(x, 2i+ n), x > 0

0, x ≤ 0

此处 χ2(x, 2i+ n) 表示自由度为 2i+ n 的 χ2 分布的概率密度函数。

证明 (1) 作正交变换使 X1 +X2 + · · · +Xn = Y 2
1 + Z，其中 Y1 ∼ N(δ, 1)，Z ∼ χ2

n−1；(2) 再利

用求 r.v. 和的分布公式求出 Y 2
1 + Z 的密度函数，此即 Y =

∑n
i=1 Xi 的密度函数。

命题 3.10 若 Y ∼ χ2
n,δ，则 Y 的特征函数为

φY (t) = (1− 2it)−
n
2 · exp

(
iδ2t

1− 2it

)
注 此处书本出现了笔误，书本在特征函数的指数部分多添加了负号。
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证明 由非中心 χ2 分布的定义，可将 Y 写作

Y =
n∑

i=1

X2
i

其中 Xi ∼ N(ai, 1)，其 Xi, i = 1, 2, · · · , n 相互独立。由独立随机变量和的特征函数等于随机变

量特征函数的积（命题 1.2），我们有

φY (t) = φ∑
X2

i
(t) =

n∏
i=1

φX2
i
(t) (12)

下面，我们只需求每个 X2
i 的特征函数 φX2

i
(t) 即可，不妨去求 X ∼ N(µ, 1) 的特征函数

φX2(t)

φX2(t) = E(eitX2

) =
1√
2π

ˆ ∞

−∞
exp

(
itx2 − 1

2
(x− µ)2

)
dx

=
1√
2π

ˆ ∞

−∞
exp

(
−(

1

2
− it)x2 + µx− µ2

2

)
dx

记 a = 1/2− it，则有

−ax2 + µx− µ2

2
= −a(x− µ

2a
)2 +

µ2

4a
− µ2

2

代回得

φX2(t) =
1√
2π

ˆ ∞

−∞
exp

(
−a(x− µ

2a
)2 +

µ2

4a
− µ2

2

)
dx

=
1√
2π

exp

(
µ2

4a
− µ2

2

)ˆ ∞

−∞
exp

(
−a(x− µ

2a
)2
)
dx

下面我们先证明一个引理：

引理 3.11 对任意正实数 a ∈ R+，我们有下面的积分结果

ˆ ∞

−∞
e−ax2

dx =

√
π

a

证明 设 y =
√
ax，则 dx = 1/

√
ady，那么原式变成
ˆ ∞

−∞
e−ax2

dx =
1√
a

ˆ ∞

−∞
e−y2 dy

而通过简单的极坐标变换即可得到
´∞
−∞ e−y2 dy =

√
π，代入即证。
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回到本问题 3.10 的证明，代入有

φX2(t) =
1√
2π

exp

(
µ2

4a
− µ2

2

)√
π

a
=

1√
2a

exp

(
µ2

4a
− µ2

2

)
=

1√
2(1/2− it)

exp

(
µ2

4(1/2− it)
− µ2

2

)
= (1− 2it)−1/2 exp

(
µ2

2(1− 2it)
− µ2

2

)
= (1− 2it)−1/2 exp

(
µ2/2(1− 1− 2it)

1− 2it

)
= (1− 2it)−1/2 exp

(
iµ2t

1− 2it

)

于是，代入式 12 有

φY (t) =
n∏

i=1

φX2
i
(t) =

n∏
i=1

(1− 2it)−1/2 exp

(
ia2i t

1− 2it

)

= (1− 2it)−n/2 exp

(
it

1− 2it

n∑
i=1

a2i

)

= (1− 2it)−
n
2 · exp

(
iδ2t

1− 2it

)
综上，命题证毕。

命题 3.12 若 Y ∼ χ2
n,δ，则 Y 的期望和方差分别为

E(Y ) = n+ δ2 var(Y ) = 2n+ 4δ2

证明 已知特征函数 φY (t) 可以求得矩母函数为

MY (t) = φY (−it) = (1− 2i(−it))−
n
2 · exp

(
iδ2(−it)

1− 2i(−it)

)
= (1− 2t)−

n
2 · exp

(
δ2t

1− 2t

)
先对 MY (t) 作对数变换

logMY (t) = −n

2
log(1− 2t) +

δ2t

1− 2t

然后求一阶导

1

MY (t)
M ′

Y (t) =
n

1− 2t
+

δ2(1− 2t) + 2δ2t

(1− 2t)2
=

n

1− 2t
+

δ2

(1− 2t)2

注意到 MY (0) = 1，令 t = 0，可求得期望等于 M ′
Y (0) 为

E(Y ) = M ′
Y (0) = MY (0) ·

(
n

1− 0
+

δ2

(1− 0)2

)
= n+ δ2

类似地，求两次导为

−M ′
Y (t)

M2
Y (t)

M ′
Y (t) +

1

MY (t)
M ′′

Y (t) =
2n

(1− 2t)2
+

4δ2

(1− 2t)3
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令 t = 0，可求得二阶矩 E(Y 2) = M ′′
Y (0) 为

E(Y 2) = M ′′
Y (0) =

[(
2n

(1− 0)2
+

4δ2

(1− 0)3

)
+

(M ′
Y (0))

2

M2
Y (0)

]
MY (0)

= [(2n+ 4δ2) + (n+ δ2)2/12]× 1 = (2n+ 4δ2) + (n+ δ2)2

所以，方差为

var(Y ) = E(Y 2)− (E(Y ))2 = (2n+ 4δ2) + (n+ δ2)2 − (n+ δ2)2 = 2n+ 4δ2

综上，E(Y ) = n+ δ2 var(Y ) = 2n+ 4δ2，命题证毕。

命题 3.13 若 Y1, Y2, · · · , Yk 相互独立，且 Yi ∼ χ2
ni,δi

，则有

k∑
i=1

Yi ∼ χ2
n,δ

其中

n =
k∑

i=1

ni, δ =

√√√√ k∑
i=1

δ2i .

证明 相互独立配合特征函数即可证毕。

3.2 t分布

3.2.1 t分布的定义

定义 3.6 (t分布) 设 r.v. X ∼ N(0, 1)，Y ∼ χ2
n，且 X 和 Y 相互独立，则称

T =
X√
Y/n

是自由度为 n 的 t 变量，其分布称为自由度为 n 的 t分布，记作 T ∼ tn。

命题 3.14 设随机变量 T ∼ tn，则其概率密度函数为

tn(x) =

Γ

(
n+ 1

2

)
Γ
(n
2

)√
nπ

(
1 +

x2

n

)−(n+1)/2

, x ∈ R

证明 首先，根据 Y ∼ χ2
n，我们先求 U =

√
Y/n 的概率密度，由于，分布函数 FU(u) 为

FU(u) = P (U =
√

Y/n ≤ u) = P (Y ≤ nu2) = FY (nu
2)

对 u 求导得密度函数 fU(u)

fU(u) =
d

du
FU(u) = fY (nu

2)
d

du
(nu2) = 2nu · fY (nu2)
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而 Y ∼ χ2
n，则可知 fY (·) 的表达式，代入则有

fU(u) = 2nu · fY (nu2) = 2nu · 1

2n/2Γ(n/2)
(nu2)n/2−1e−nu2/2

=
2nn/2

2n/2Γ(n/2)
un−1e−nu2/2, u ≥ 0

为方便记号，常数可写作

C :=
2nn/2

2n/2Γ(n/2)

下面求解 T = X/U, X ∼ N(0, 1), U ∼ FU 的概率密度。注意到 X 和 U 独立，故联合分布为

fX,U(x, u) = fX(x) · fU(u)

对于变换 T = X/U, Z = U 有 X = TZ, U = Z，于是 Jacobi 行列式的绝对值为

| det J | =

∣∣∣∣∣det
(
∂x/∂t ∂x/∂z

∂u/∂t ∂u/∂z

)∣∣∣∣∣ =
∣∣∣∣∣det

(
z t

0 1

)∣∣∣∣∣ = |z|

所以 T, Z 的联合密度函数为

fT,Z(t, z) = fX(tz) · fU(z)|z| = fX(tz) · fU(z) · z, z ≥ 0

于是 T 的边际分布概率密度为

fT (t) =

ˆ ∞

−∞
fT,Z(t, z) dz =

ˆ ∞

0

fX(tz) · fU(z) · z dz

=

ˆ ∞

0

1√
2π

e−t2z2/2 · Czn−1e−nz2/2 dz

=
C√
2π

ˆ ∞

0

zn exp

(
−t2 + n

2
z2
)

dz

记 (t2 + n)/2 = α，则积分形式化为ˆ ∞

0

zne−αz2 dz =
1

2α(n+1)/2

ˆ ∞

0

(αz2)(n+1)/2−1e−αz2 d(αz2) =
1

2α(n+1)/2
Γ((n+ 1)/2)

代回原式，得到

fT (t) =
C√
2π

· 1

2α(n+1)/2
Γ((n+ 1)/2)

=
2nn/2

2n/2Γ(n/2)
· 1√

2π
· 1

2α(n+1)/2
Γ((n+ 1)/2)

=
2nn/2

2n/2Γ(n/2)
· 1√

2π
· 1

2((t2 + n)/2)(n+1)/2
Γ((n+ 1)/2)

=
1√
2π

·
Γ

(
n+ 1

2

)
Γ
(n
2

) · 2
(n+1)/2

2n/2
· nn/2(n+ t2)−(n+1)/2

=
1√
2π

√
2√
n
·
Γ

(
n+ 1

2

)
Γ
(n
2

) ·
(
1 +

t2

n

)−(n+1)/2
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所以 T 的密度函数为

fT (t) =

Γ

(
n+ 1

2

)
Γ
(n
2

)√
nπ

(
1 +

t2

n

)−(n+1)/2

□

3.2.2 t分布的性质

命题 3.15 tn 的密度函数与标准正态分布 N(0, 1) 密度很相似，它们都是关于原点对称的单峰的

偶函数，在 x = 0 处达到极大值。但 tn 的峰值低于 N(0, 1) 的峰值，且 tn 存在厚尾。

重要的是，t 分布的极限分布为标准正态分布。

lim
n→∞

tn(x) = ϕ(x)

其中 ϕ(x) 为 N(0, 1) 的概率密度函数，即 tn依分布收敛于 N(0, 1)。

证明 通过函数极限可以证明 limn→∞ tn(x) = ϕ(x)，即可证明

tn
L−→ N(0, 1)

或者采用 Slutsky引理证明：

由于 Yn 可记作
∑n

i=1 X
2
i ，其中 Xi

i.i.d.∼ N(0, 1)，所以根据 Khinchin大数定律

Yn/n = X̄2
n

P−→ E(X2
1 ) = 1

所以 T = X/
√
Yn/n

L−→ X/
√
1 = X，即 N(0, 1)。□

命题 3.16 若 r.v. T ∼ tn，则 E(T r) 只有当 r < n (n > 1) 时存在，且

E(T r) =


nr/2 ·

Γ

(
r + 1

2

)
Γ

(
n− r

2

)
Γ
(n
2

)
Γ

(
1

2

) , r 为偶数

0, r 为奇数

特别地，当 n ≥ 2 时，E(T ) = 0。当 n ≥ 3 时，D(T ) = n/(n− 2)。

证明 由命题 3.14 知 T 的概率密度函数

tn(x) =

Γ

(
n+ 1

2

)
Γ
(n
2

)√
nπ

(
1 +

x2

n

)−(n+1)/2

, x ∈ R

若矩存在，先讨论奇数阶矩。且由命题 3.15 可知 tn(x) 为偶函数，则 xrtn(x) 在 2 ∤ r 时是奇函

数。于是 E(T r) = 0, 2 ∤ r。
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下面具体讨论 r 阶矩的存在性和偶数阶矩的表达式。由于已知概率密度函数，实则探讨下

面积分的存在性

E(T r) =

ˆ ∞

−∞
xr

Γ

(
n+ 1

2

)
Γ
(n
2

)√
nπ

(
1 +

x2

n

)−(n+1)/2

dx

为方便化简，记常数

C :=

Γ

(
n+ 1

2

)
Γ
(n
2

)√
nπ

而当 r 为偶数时，积分对偶函数积分，于是有

E(T r) = 2C

ˆ ∞

0

xr

(
1 +

x2

n

)−(n+1)/2

dx

作换元 y =
(
1 + x2

n

)−1

，于是 x =
[
n
(

1−y
y

)]1/2
，那么有

E(T r) = 2C ·
ˆ 0

1

[
n

(
1− y

y

)]r/2
y

n+1
2 d

[
n

(
1− y

y

)]1/2
= 2C ·

ˆ 0

1

nr/2 (1− y)r/2

yr/2
y

n+1
2
n1/2

2

(1− y)−1/2

y−1/2

−1

y2
dy

= C · n(r+1)/2

ˆ 1

0

y−
1
r

n+1
2

+ 1
2
−2 · (1− y)

r
2
− 1

2 dy

= C · n(r+1)/2

ˆ 1

0

y
n−r
2

−1 · (1− y)
r+1
2

−1 dy

注意到 Beta 函数 B(a, b) =
´ 1
0
ta−1(1− t)b−1 dt，所以有

E(T r) = C · n(r+1)/2 · B
(
n− r

2
,
r + 1

2

)
由 Beta 函数的性质，存在性需要 n−r

2
> 0 即 r < n。此时，再由 B(a, b) = Γ(a)Γ(b)/Γ(a+ b)，以

及 Γ(1/2) =
√
π，有

E(T r) =

Γ

(
n+ 1

2

)
Γ
(n
2

)√
nπ

· n(r+1)/2 ·
Γ

(
n− r

2

)
· Γ
(
r + 1

2

)
Γ

(
n− r

2
+

r + 1

2

)

= nr/2 ·
Γ

(
r + 1

2

)
Γ

(
n− r

2

)
Γ
(n
2

)
Γ

(
1

2

) , r < n, 2 | r

于是，命题证毕。

命题 3.17 当 n = 1 时，t 分布就是 Cauchy 分布，此时概率密度函数变为

t1(x) =
1

π(1 + x2)
, x ∈ R

由命题 3.16 可知，Cauchy 分布不存在任何矩 E(T r), ∀ r。
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3.2.3 非中心 t分布

定义 3.7 设 r.v. X ∼ N(δ, 1) 以及 r.v. Y ∼ χ2
n 且 X 和 Y 相互独立，则称

Z =
X√
Y/n

的分布是自由度为 n 和非中心参数为 δ 的非中心 t分布，记作 Z ∼ tn,δ。特别地，当 δ = 0 时为

中心的 t 分布，即定义 3.6 的 tn。

命题 3.18 非中心 t 分布 tn,δ 的密度函数为

tn,δ(x) =
nn/2

√
πΓ(n/2)

· e−δ2/2

(n+ x2)
n+1
2

∞∑
i=0

Γ

(
n+ i+ 1

2

)
(δx)i

i!

(
2

n+ x2

)i/2

, x ∈ R

命题 3.19 若 Zn ∼ tn,δ，则其依分布收敛于正态分布：

Zn
L−→ N(δ, 1)

证明 同样使用 Slutsky 引理，根据 Yn/n
P−→ 1 可证。

命题 3.20 若 Zn ∼ tn,δ，则其期望和方差为

E(Zn) = δ
(n
2

) 1
2 Γ
(
n−1
2

)
Γ
(
n
2

) , n ≥ 2

D(Zn) =
n(1 + δ2)

n− 2
− δ2n

2

(
Γ
(
n−1
2

)
Γ
(
n
2

) )2

, n ≥ 3

3.3 F 分布

3.3.1 F 分布的定义

定义 3.8 (F 分布) 设 r.v. X ∼ χ2
m 和 r.v. Y ∼ χ2

n 且 X,Y 相互独立，则称

F =
X/m

Y/n

是自由度为 m 和 n 的 F 变量。其分布称为自由度为 m 和 n 的 F 分布，记作 F ∼ Fm,n。

命题 3.21 设 r.v. Z ∼ Fm,n，则其概率密度函数为

fm,n(x) =


Γ

(
m+ n

2

)
Γ
(m
2

)
Γ
(n
2

)mm
2 n

n
2 x

m
2
−1(n+mx)−

m+n
2 , x > 0

0, 其他
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3.3.2 F 分布的性质

命题 3.22 若 Z ∼ Fm,n 则 1/Z ∼ Fn,m。

命题 3.23 若 Z ∼ Fm,n 则对 r > 0 有

E(Zr) =
( n

m

)r Γ (m
2
+ r
)
Γ
(
n
2
− r
)

Γ
(
m
2

)
Γ
(
n
2

) , 2r < n

特别地

E(Z) =
n

n− 2
, n > 2

D(Z) =
2n2(m+ n− 2)

m(n− 2)2(n− 4)
, n > 4

命题 3.24 若 T ∼ tn，则 T 2 ∼ F1,n

命题 3.25 若 Fm,n(α) 代表 Fm,n 的上 α分位数点，即对于 Z ∼ Fm,n 有 P (Z ≥ Fm,n(α)) = α，于

是有

Fm,n(α) · Fn,m(1− α) = 1

证明 根据上分位数点的定义，对于 Z ∼ Fm,n 有

α = P (Z ≥ Fm,n(α)) = P (1/Z ≤ 1/Fm,n(α)) = 1− P (1/Z ≥ 1/Fm,n(α))

即有

P (1/Z ≥ 1/Fm,n(α)) = 1− α

而 1/Z ∼ Fn,m，于是 1/Fm,n(α) 是 Fn,m 的上 1− α 分位数点，即

1/Fm,n(α) = Fn,m(1− α) ⇒ Fm,n(α) · Fn,m(1− α) = 1

命题证毕。

3.3.3 非中心 F 分布

定义 3.9 设 r.v. X ∼ χ2
m,δ 和 r.v. Y ∼ χ2

n 且 X,Y 相互独立，则称

Z =
X/m

Y/n

的分布是自由度为 m,n 和非中心参数为 δ 的非中心 F 分布，记作 Z ∼ Fm,n;δ。当 δ = 0 时，称

Z 为中心的 F 分布，记作 Fm,n。

命题 3.26 若 Z ∼ Fm,n;δ，则 Z 的概率密度函数为

fm,n;δ(x) =


m

n
2 n

m
2

Γ
(
n
2

) e−
δ2

2 x
m
2
−1

∞∑
k=0

(
δ2mx

2

)k
Γ
(
m+n
2

+ k
)

k!Γ
(
m
2
+ k
)
(mx+ n)

m+n
2

+k
, x > 0

0, 其他
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命题 3.27 若 X ∼ tn,δ，则 X2 ∼ F1,n;δ。

命题 3.28 若 Zn ∼ Fm,n;δ, n = 1, 2, · · · 且 δ 固定，则当 n → ∞ 时

Zn
L−→

χ2
m,δ

m

命题 3.29 若 Z ∼ Fm,n;δ，则其的期望和方差为

E(Z) =
m(m+ δ)

m(n− 2)
, n > 2

D(Z) =
2n2

m(n− 2)2(n− 4)
[(m+ δ2)2 + (n− 2)(m+ 2δ2)], n > 4

3.4 几个重要推论

回顾定理 2.3 以及上面的三大抽样分布（定义 3.1，3.6，3.8），我们得到下面几个重要的推

理。

推论 4 设 X1, X2, · · · , Xn 相互独立，且 Xi ∼ N(ai, σ
2
i ), i = 1, 2, · · · , n 则

n∑
i=1

(
Xi − ai

σi

)2

∼ χ2
n

证明 因为 Yi = (Xi − ai)/σi ∼ N(0, 1)，且 Y1, Y2, · · · , Yn 相互独立，由定义 3.1 可知
∑n

i=1(Xi −
ai)

2/σ2
i =

∑n
i=1 Y

2
i ∼ χ2

n，命题证毕。

推论 5 设 X1, X2, · · · , Xn
i.i.d.∼ N(a, σ2)，则

T =

√
n(X̄ − a)

S
∼ tn−1

其中 X̄ = 1
n

∑n
i=1 Xi 为样本均值，S2 = 1

n−1

∑n
i=1(Xi − X̄)2 为样本无偏方差。

证明 由定理 2.3 可知 X̄ ∼ N(a, σ2/n) 及 (n − 1)S/σ ∼ χ2
n−1，将 X̄ 标准化得

√
n(X̄ − a)/σ ∼

N(0, 1)，且 X̄ 和 S 独立。于是根据定义 3.6 可知

T =

√
n(X̄ − a)√
S2/σ2

=

√
n(X̄ − a)

S
∼ tn−1

命题证毕。

推论 6 设X1, X2, · · · , Xm
i.i.d.∼ N(a1, σ

2)以及 Y1, Y2, · · · , Yn
i.i.d.∼ N(a2, σ

2)，且样本X1, X2, · · · , Xm

和 Y1, Y2, · · · , Yn 相互独立，则

T =
(X̄ − Ȳ )− (a1 − a2)

Sw

·
√

mn

m+ n
∼ tm+n−2

其中 (m+ n− 2)S2
w = (m− 1)S2

1 + (n− 1)S2
2 此处

S2
1 =

1

m− 1

m∑
i=1

(Xi − X̄)2, S2
2 =

1

n− 1

m∑
i=1

(Yi − Ȳ )2
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证明 由定理 2.3 可知 X̄ ∼ N(a1, σ
2/m), Ȳ ∼ N(a2, σ

2/n)，故有 X̄ − Ȳ ∼ N(a1 − a2, (m +

n)σ2/mn) 将其标准化
(X̄ − Ȳ )− (a1 − a2)

σ

√
mn

m+ n
∼ N(0, 1)

又 (m− 1)S2
1/σ

2 ∼ χ2
m−1, (n− 1)S2

2/σ
2 ∼ χ2

n−1，且二者独立，根据 χ2 分布的性质

(m− 1)S2
1 + (n− 1)S2

2

σ2
∼ χ2

m+n−2

又 (X̄, Ȳ ) 和 (S2
1 , S

2
2) 独立，由定义 3.6 可知

T =
(X̄ − Ȳ )− (a1 − a2)

σ

√
mn

m+ n

/√
(m− 1)S2

1 + (n− 1)S2
2

σ2(m+ n− 2)

=
(X̄ − Ȳ )− (a1 − a2)

Sw

·
√

mn

m+ n
∼ tm+n−2

命题证毕。

推论 7 设X1, X2, · · · , Xm
i.i.d.∼ N(a1, σ

2
1)以及 Y1, Y2, · · · , Yn

i.i.d.∼ N(a2, σ
2
2)，且样本X1, X2, · · · , Xm

和 Y1, Y2, · · · , Yn 相互独立，则

F =
S2
1

S2
2

· σ
2
2

σ2
1

∼ Fm−1,n−1

此处 S2
1 , S

2
2 的定义与推论 6 相同。

证明 由定理 2.3 可知 (m− 1)S2
1/σ

2
1 ∼ χ2

m−1, (n− 1)S2
2/σ

2
2 ∼ χ2

n−1 且二者独立，由定义 3.8 可知

F =

(m− 1)S2
1

σ2
1

/
(m− 1)

(n− 1)S2
2

σ2
2

/
(n− 1)

=
S2
1

S2
2

· σ
2
2

σ2
1

∼ Fm−1,n−1

命题证毕。

推论 8 设 X1, X2, · · · , Xn i.i.d. 服从指数分布 f(x, λ) = λe−λxI(0,∞)(x)，则有

2λnX̄ = 2λ
n∑

i=1

Xi ∼ χ2
2n

证明 由命题 3.4 和命题 3.2 有 Exp(λ) = Γ(1, λ) 可知 2λXi ∼ χ2
2。再由 χ2 分布的性质，

2λ
n∑

i=1

Xi ∼ χ2∑n
i=1 2

= χ2
2n

命题证毕。

4 次序统计量

定义 4.1 (次序统计量) 设 X1, X2, · · · , Xn 是来自总体 X 的样本，记

X(1) ≤ X(2) ≤ · · · ≤ X(n)

则称 X(1), X(2), · · · , X(n) 分别为样本的第 1, 2, · · · , n 个次序统计量。
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4.1 单个次序统计量的分布

命题 4.1 设 X1, X2, · · · , Xn
i.i.d.∼ F，f 为 F 的密度函数，则第 1 ≤ m ≤ n 个次序统计量 X(m) 的

概率密度函数为

fm(x) = m

(
n

m

)
[F (x)]m−1[1− F (x)]n−mf(x), x ∈ R

证明 因为

Fm(x) = P (X(m) < x) = P (X1, X2, · · · , Xn 中至少有 m 个 Xi < x)

=
n∑

i=m

P (X1, X2, · · · , Xn 恰有 i 个 Xi < x)

若记 Ai = {Xi < x}, i = 1, 2, · · · , n 则 P (Ai) = P (Xi < x) = F (x)，且 A1, A2, · · · , An 相互独

立。于是

{X1, X2, · · · , Xn 中恰有 i 个 < x} = {事件 A1, A2, · · · , An 中恰有 i 个发生}

而这个事件的概率可用二项分布 b(n, F (x)) 表示，即

P ({事件 A1, A2, · · · , An 中恰有 i 个发生}) =
(
n

i

)
[F (x)]i[1− F (x)]n−i

故

Fm(x) =
n∑

i=m

(
n

i

)
[F (x)]i[1− F (x)]n−i

利用恒等式（证明见作业 HW 2）
n∑

i=m

(
n

i

)
pi(1− p)n−i = m

(
n

m

)ˆ p

0

tm−1(1− t)n−m dt

可知

Fm(x) = m

(
n

m

)ˆ F (x)

0

tm−1(1− t)n−m dt

⇒ fm(x) = F ′
m(x) = m

(
n

m

)
[F (x)]m−1[1− F (x)]n−mf(x)

即第 m 个次序统计量的概率密度函数为

fm(x) = m

(
n

m

)
[F (x)]m−1[1− F (x)]n−mf(x), x ∈ R

命题证毕。
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4.2 次序统计量的联合分布

命题 4.2 (n个次序统计量的联合分布) 设 X1, X2, · · · , Xn
i.i.d.∼ F，f 为 F 的密度函数，则次序统

计量 (X(1), X(2), · · · , X(n)) 的联合概率密度函数为

f(x(1), x(2), · · · , x(n)) =

n!f(x(1))f(x(2)) · · · f(x(n)), x(1) < x(2) < · · · < x(n)

0, 其他

证明 令 yi = x(i)，i = 1, 2, · · · , n，则

G(y1, y2, · · · , yn) := P (X(1) < y1, X(2) < y2, · · · , X(n) < yn)

=

n!P (Xj1 < y1, Xj2 < y2, · · · , Xjn < yn), y1 < y2 < · · · < yn

0, 其他

其中 Xj1 < · · · < Xjn 且 (j1, j2, · · · , jn) 是 (1, 2, · · · , n) 的任意排列。故 n 个次序统计量的联合概

率密度函数为

g(y1, y2, · · · , yn) =

n!f(y1)f(y2) · · · f(yn), y1 < y2 < · · · < yn

0, 其他

命题证毕。

命题 4.3 (2个次序统计量的联合分布) 设 X1, X2, · · · , Xn
i.i.d.∼ F，f 为 F 的密度函数，则第 1 ≤

i < j ≤ n 个次序统计量 (X(i), X(j)) 的联合概率密度函数为

fi,j(x, y) =


n!

(i− 1)!(j − i− 1)!(n− j)!
[F (x)]i−1[F (y)− F (x)]j−i−1[1− F (y)]n−jf(x)f(y), x < y

0, 其他

证明 作业HW 3证明了下面的结论：设 r.v. X 的分布函数为F (x)，密度函数为 f(x)，且X1, X2, · · · , Xn
i.i.d.∼

f，则有 ˆ
· · ·
ˆ

a<x1<···<xn<b

f(x1) · · · f(xn) dx1 · · · dxn =
1

n!
[F (b)− F (a)]n (13)

回到本题，由于 fi,j(x, y) 是 (X(1), · · · , X(n)) 联合密度 g(y1, · · · , yn), yi = x(i) 的边缘密度，

对 x < y 有

fi,j(x, y) =

ˆ
· · ·
ˆ

−∞<x1<···<xn<∞

n!
∏
l ̸=i,j

f(xl) · f(x)f(y) dx1 · · · dxi−1dxi+1 · · · dxj−1dxj+1 · · · dxn

由 f ≥ 0 且可积，根据 Fubini 定理，可将上式拆成 3 部分

fi,j(x, y) = n! · A(x) · B(x, y) · C(y)
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根据式 13 可知 A(·), B(·, ·), C(·) 分别为

A(x) =

ˆ
· · ·
ˆ

−∞<x1<···<xi−1<x

i−1∏
l=1

f(xl) · f(x) dx1 · · · dxi−1

=
1

(i− 1)!
[F (x)− F (−∞)]i−1f(x)

B(x, y) =

ˆ
· · ·
ˆ

x<xi+1<···<xj−1<y

j−1∏
l=i+1

f(xl) · f(y) dx1 · · · dxi−1

=
1

(j − i− 1)!
[F (y)− F (x)]j−i−1f(y)

C(y) =

ˆ
· · ·
ˆ

y<xj+1<···<xn<+∞

n∏
l=j+1

f(xl) dx1 · · · dxi−1

=
1

(n− j)!
[F (+∞)− F (y)]n−j

综上可知，当 x < y 有概率密度

fi,j(x, y) = n!A(x)B(x, y)C(y)

=
n!

(i− 1)!(j − i− 1)!(n− j)!
[F (x)]i−1[F (y)− F (x)]j−i−1[1− F (y)]n−jf(x)f(y)

命题证毕。

4.3 极差的分布

下面求 V = X(j) −X(i), i < j 的分布。

作变换 V = X(j) − X(i), Z = X(i) 则有 X(j) = V + Z, X(i) = Z，于是 Jacobi 行列式为

J =

∣∣∣∣∂(X(j), X(i))

∂V ∂Z

∣∣∣∣ = 1。那么容易得到 (V, Z) 的联合概率密度函数（v > 0）为

gi,j(v, z) =
n!

(i− 1)!(j − i− 1)!(n− j)!
[F (z)]i−1[F (v+z)−F (z)]j−i−1[1−F (v+z)]n−jf(z)f(v+z)

所以 V 的密度函数为

gV (v) =

ˆ ∞

−∞
gi,j(v, z) dz

5 统计量的极限分布

5.1 随机变量列的收敛

定义 5.1 (依概率收敛) 考虑定义在同一概率空间上的随机变量列 {Xn}n≥1 以及随机变量 X。若

对 ∀ ϵ > 0 都有

lim
n→∞

P (|Xn −X| ≤ ϵ) = 1

27



则称 Xn依概率收敛到 X，记作 Xn
P−→ X。

定义 5.2 (依分布收敛) 考虑定义在同一概率空间上的随机变量列 {Xn}n≥1 以及随机变量 X。X

的分布函数 F (·) 的连续点集合为 C。若 Xn 的分布函数 Fn(·) 对 ∀ x ∈ C 都满足

lim
n→∞

Fn(x) = F (x)

则称 Xn依分布收敛到 X，记作 Xn
L−→ X。

定义 5.3 (几乎处处收敛) 考虑定义在同一概率空间上的随机变量列 {Xn}n≥1 以及随机变量 X。

若

P
(
lim
n→∞

Xn = X
)
= 1,

则称 Xn几乎处处收敛到 X，记作 Xn
a.s.−→ X。

命题 5.1 有关依概率收敛和依分布收敛的相关性质：

(1) 依概率收敛强于依分布收敛，即

Xn
P−→ X ⇒ Xn

L−→ X

(2) 当极限是常数时，二者等价，即

Xn
P−→ c ⇔ Xn

L−→ c

其中 c ∈ R 为常数。

(3) 随机向量列的收敛：

(Xn, Yn)
T P−→ (X, Y )T ⇔ Xn

P−→ X, Yn
P−→ Y

(Xn, Yn)
T L−→ (X, Y )T ⇒ Xn

L−→ X, Yn
L−→ Y

即向量的依概率收敛等价于分量均依概率收敛，但分量的依分布收敛不能推出向量的依分

布收敛。

引理 5.2 (Slutsky引理) 令 {Xn} 和 {Yn} 是两个随机变量的序列，满足当 n → ∞ 时，

Xn
L−→ X, Yn

P−→ c

其中 c ∈ R 为常数。则有：

(1) Xn ± Yn
L−→ X ± c

(2) XnYn
L−→ cX

(3) Xn/Yn
L−→ X/c

5.2 大数定律

定理 5.3 (Khinchin大数定律 /弱大数定律) 考虑独立同分布的随机变量列 (Xi)i≥1 假设 E(X1) <

∞。记 X̄n = n−1
∑n

i=1 Xi 且 µ = E(X1)。则

X̄n
P−→ µ
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定理 5.4 (Kolmogorov大数定律 /强大数定律) 考虑独立同分布的随机变量列 (Xi)i≥1 假设E(X1) <

∞，且 Var(X2
1 ) < ∞，记 X̄n = n−1

∑n
i=1 Xi 且 µ = E(X1)。则

X̄n
a.s.−→ µ

定理 5.5 (Markov大数定律) 设随机变量列 {Xn}n≥1 满足

lim
n→∞

D(
1

n

n∑
i=1

Xi) = 0

则有
1

n

n∑
i=1

Xi −
1

n

n∑
i=1

E(Xi)
P−→ 0, as n → ∞

5.3 中心极限定理

定理 5.6 (Lindeberg-Lévy中心极限定理) 考虑独立同分布的随机变量列 (Xi)i≥1 记 X̄n = n−1
∑n

i=1 Xi

且 µ = E(X1)。若 σ2 = D(X1) ∈ (0,+∞)，则当 n → ∞ 时有
√
n(X̄n − µ)

σ

L−→ N(0, 1)

6 指数族

6.1 定义和常见的指数族

定义 6.1 (指数型分布族) 设 F = {f(x; θ) : θ ∈ Θ} 是定义在样本空间 X 上的分布族，其中 Θ

为参数空间。若概率密度函数 f(x; θ) 可表示成如下形式

f(x; θ) = C(θ) exp

{
k∑

i=1

Qi(θ)Ti(x)

}
h(x)

其中 k ∈ N+ 且 C(θ) > 0 和 Qi(θ), i = 1, 2, · · · , k 都是定义在参数空间 Θ 上的函数，而 h(x) > 0

和 Ti(x), i = 1, 2, · · · , k 都是定义在样本空间 X 上的函数。则称此分布族为指数型分布族，简

称指数族（exponential family）。

定义 6.2 (支撑集) 一个分布族 F = {f(x; θ) : θ ∈ Θ} 的支撑集为

G(x) = {x : f(x; θ) > 0}

命题 6.1 指数族中所有分布具有共同的支撑集，不难发现这个支撑集为

G(x) = {x : f(x; θ) > 0} = {x : h(x) > 0}

且支撑集与参数 θ 无关。
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命题 6.2 设 X = (X1, X2, · · · , Xn)
T ∈ Rn 是从总体 F 中抽取的简单随机样本，则

当 F = N(µ, σ2) 时，样本分布族是指数族。

当 F = Γ(γ, λ) 时，样本分布族是指数族。

设随机变量 X 来自总体 F 则

当 F = b(n, p) 时，样本分布族是指数族。

当 F = Poi(λ) 时，样本分布族是指数族。

当 F = U(0, θ) 时，样本分布族不是指数族。

6.2 指数族的自然形式及自然参数空间

定义 6.3 若指数族有下列形式

f(x;θ) = C∗(θ) exp

{
k∑

i=1

θiTi(x)

}
h(x)

则称它为指数族的自然形式（natural form）。此时，集合

Θ∗ =

{
θ = (θ1, · · · , θk) :

ˆ
X

exp

{
k∑

i=1

θiTi(x)

}
h(x) dx < ∞

}
称为自然参数空间（natural parametric space）。

注 推导自然形式可设 φi = Qi(x) 而后将 C(θ) 写成 φ 的函数 C∗(φ)，其中 φ = (φ1, · · · , φk)。

6.3 指数族的性质

定理 6.3 在指数族的自然形式下，自然参数空间为凸集。即对于自然参数空间

Θ∗ =

{
θ = (θ1, θ2, · · · , θk) :

ˆ
X

exp

(
k∑

i=1

θiTi(x)

)
h(x) dx < ∞

}
其中 h(x) > 0，而 X 为样本空间。结论是：对于任意 θ1,θ2 ∈ Θ∗，设 0 < α < 1，记 θ =

αθ1 + (1− α)θ2 ，则 θ ∈ Θ∗。

证明 记 T (x) = (T1(x), T2(x), · · · , Tk(x))
T ∈ Rk，则我们需要证明：

ˆ
X

exp
(
θTT (x)

)
h(x) dx < ∞

其中 θ = αθ1 + (1− α)θ2 代入即

exp
(
θTT (x)

)
h(x) =

[
eαθ

T
1 T (x)h(x)α

]
·
[
e(1−α)θT2 T (x)h(x)1−α

]
记 p = 1/α, q = 1/(1− α)，同时记 exp

(
θTT (x)

)
h(x) := f(x)g(x)，其中

f(x) = e
1
p
θT1 T (x)h(x)

1
p > 0 g(x) = e

1
q
θT2 T (x)h(x)

1
q > 0
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由于 α ∈ (0, 1) ⇒ p, q > 1 且 1
p
+ 1

q
= α + (1− α) = 1，所以由 Hölder 不等式 6.5 有

ˆ
X

f(x)g(x) dx ≤
(ˆ

X

f(x)p dx

)1/p(ˆ
X

g(x)q dx

)1/q

(14)

而

f(x)p =
(
e

1
p
θT1 T (x)h(x)

1
p

)p
= eθ

T
1 T (x)h(x)

g(x)q =
(
e

1
q
θT
2 T (x)h(x)

1
q

)q
= eθ

T
2 T (x)h(x)

又因为 θ1,θ2 ∈ Θ∗，所以
ˆ

X

f(x)p dx =

ˆ
X

eθ
T
1 T (x)h(x) dx < ∞

ˆ
X

g(x)q dx =

ˆ
X

eθ
T
2 T (x)h(x) dx < ∞

由不等式 14 可知 ˆ
X

f(x)g(x) dx =

ˆ
X

exp
(
θTT (x)

)
h(x) dx < ∞

即有 θ ∈ Θ∗ 证毕。

定理 6.4 (Young不等式) 设 a, b ≥ 0 p, q > 1 满足

1

p
+

1

q
= 1

则有

ab ≤ ap

p
+

bq

q

当且仅当 ap = bq 时，等号成立。

证明 由 φ(x) = ex 为凸函数，由凸函数的性质或 Jensen 不等式

φ(λx1 + (1− λ)x2) ≤ λφ(x1) + (1− λ)φ(x2)

令 λ = 1/p由条件 1−λ = 1/q。下面，对任意 a, b > 0取 x1 = p ln a, x2 = q ln b，由上述的 Jensen
不等式

eλp ln a+(1−λ)q ln b ≤ λep ln a + (1− λ)eq ln b

而左边

eλp ln a+(1−λ)q ln b = e
1
p
·p ln a · e

1
q
·q ln b = ab

右边

λep ln a + (1− λ)eq ln b =
1

p
· eln ap +

1

q
· eln bq =

ap

p
+

bq

q

综上

ab ≤ ap

p
+

bq

q

定理证毕。
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定理 6.5 (Hölder不等式) 设 f(x), g(x) 为可测函数，p, q > 1 满足

1

p
+

1

q
= 1

则有 ˆ
|f(x)g(x)| dx ≤

(ˆ
|f(x)|p dx

)1/p(ˆ
|g(x)|q dx

)1/q

等号成立当且仅当存在常数 C > 0，使得对几乎处处的 x 有 |f(x)|p = C|g(x)|q 成立。

证明 这里只证明不平凡的情形。记

A :=

ˆ
|f(x)|p dx ∈ (0, ∞), B :=

ˆ
|g(x)|q dx ∈ (0, ∞)

设函数

u(x) =
|f(x)|
A1/p

> 0, v(x) =
|g(x)|
B1/q

> 0

则容易得
´
u(x)p dx =

´
v(x)q dx = 1。由 Young 不等式（定理 6.4），令 a = u(x), b = v(x)，则

u(x)v(x) ≤ u(x)p

p
+

v(x)q

q

由上式对任意的 x 都成立，且 0 < u, v < ∞，故积分不等式仍成立ˆ
u(x)v(x) dx ≤

ˆ
u(x)p dx+

ˆ
v(x)q dx = 1

即 ˆ
|f(x)|
A1/p

|g(x)|
B1/q

dx = A−1/pB−1/q

ˆ
|f(x)g(x)| dx ≤ 1

代入 A,B 即有 ˆ
|f(x)g(x)| dx ≤

(ˆ
|f(x)|p dx

)1/p(ˆ
|g(x)|q dx

)1/q

定理证毕。

定理 6.6 设指数族的自然形式中，自然参数空间有内点，其内点集为Θ0。设 g(x)为任一实函数，

使得积分

G(θ) =

ˆ
X

g(x) exp

{
k∑

j=1

θjTj(x)

}
h(x) dx

在 Θ0 存在有限。则 G(θ) 的任意阶偏导数在 Θ0 内存在且可在积分号下求得，即

∂mG(θ)

∂θm1
1 · · · ∂θmk

k

=

ˆ
X

∂m

∂θm1
1 · · · ∂θmk

k

[
g(x) exp

{
k∑

j=1

θjTj(x)

}
h(x)

]
dx

其中 m =
∑k

j=1 mj，即对 G(θ) 关于 θ 的任意阶偏导数可在积分下求得。

定理 6.7 设指数族的自然形式中，自然参数空间有内点，其内点集为 Θ0。对 θ ∈ Θ0，有 Ti(x)

的各阶矩均存在有限，可通过在积分号下求导算出。例如：

E(Ti(x)) = −∂ logC∗(θ)

∂θi

Cov(Ti(x), Tj(x)) = −∂2 logC∗(θ)

∂θi∂θj
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证明 由概率定义
´

X
f(x; θ) = 1，有关系式

1

C∗(θ)
=

ˆ
X

exp

{
k∑

j=1

θjTj(x)

}
h(x) dx (15)

对式 15 两边对 θi 求偏导有

− 1

C∗(θ)2
∂C∗(θ)

∂θi
=

ˆ
X

Ti(x) exp

{
k∑

j=1

θjTj(x)

}
h(x) dx (16)

注意到

E(Ti(x)) =

ˆ
X

Ti(x)C
∗(θ) exp

{
k∑

j=1

θjTj(x)

}
h(x) dx

所以

E(Ti(x)) = − 1

C∗(θ)2
∂C∗(θ)

∂θi
· C∗(θ) = −∂ logC∗(θ)

∂θi

继续对式 16 关于 θj 求偏导有

2

C∗(θ)3
∂C∗(θ)

∂θi

∂C∗(θ)

∂θj
− 1

C∗(θ)2
∂2C∗(θ)

∂θi∂θj
=

ˆ
X

Ti(x)Tj(x) exp

{
k∑

l=1

θlTl(x)

}
h(x) dx (17)

注意到

Cov(Ti(x), Tj(x)) = E(Ti(x)Tj(x))− E(Ti(x))E(Tj(x))

=

ˆ
X

Ti(x)Tj(x)C
∗(θ) exp

{
k∑

l=1

θlTl(x)

}
h(x) dx− E(Ti(x))E(Tj(x))

代入式 16 和 E(Ti(x)),E(Tj(x)) 的表达式得

Cov(Ti(x), Tj(x)) =

(
2

C∗(θ)3
∂C∗(θ)

∂θi

∂C∗(θ)

∂θj
− 1

C∗(θ)2
∂2C∗(θ)

∂θi∂θj

)
· C∗(θ)

−
(
− 1

C∗(θ)

∂C∗(θ)

∂θi

)(
− 1

C∗(θ)

∂C∗(θ)

∂θj

)
=

1

C∗(θ)2
∂C∗(θ)

∂θi

∂C∗(θ)

∂θj
− 1

C∗(θ)

∂2C∗(θ)

∂θi∂θj

=− ∂2 logC∗(θ)

∂θi∂θj

命题证毕。

7 充分统计量

7.1 定义和示例

定义 7.1 (充分统计量) 设样本 X 的分布族为 {f(x;θ) : θ ∈ Θ}，其中 Θ 是参数空间。令 T =

T (X) 为一统计量，若在已知 T 的条件下，样本 X 的条件分布与参数 θ 无关，则称 T (X) 为 θ

的充分统计量（sufficient statistic），即

Pθ(X|T (X) = t) 与 θ 无关
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例 7.1 设 X = (X1, X2, · · · , Xn)
T ∈ Rn 为从 b(1, θ) 分布中抽取的简单随机样本，则 T (X) =∑n

i=1 Xi 为充分统计量。

证明 由 Xi ∼ b(1, θ) 可知 T =
∑n

i=1 ∼ B(n, θ) 二项分布。由定义出发证明：

Pθ(X|T (X)) = P (X1 = x1, · · · , Xn = xn|T = t0) =
P (X1 = x1, · · · , Xn = xn, T = t0)

P (T = t0)

=
θt0(1− θ)n−t0(
n
t0

)
θt0(1− θ)n−t0

· I(
n∑

i=1

xi = t0)

=

(
n

t0

)−1

· I(
n∑

i=1

xi = t0)

与 θ 无关，故 T (X) =
∑n

i=1 Xi 为充分统计量。

例 7.2 设 X = (X1, X2, · · · , Xn)
T ∈ Rn 为从 N(θ, 1) 分布中抽取的简单随机样本，则 T (X) =∑n

i=1 Xi/n = X̄ 为充分统计量。

证明 作正交变换 A 使得

Y = (Y1, · · · , Yn)
T = AX = A(X1, X2, · · · , Xn)

T

其中 A 为正交阵，且

A =



1√
n

1√
n

· · · 1√
n

a21 a22 · · · a2n
... ... . . . ...

an1 an2 · · · ann


n×n

由之前有关正态变量样本的性质推导可知 Y1, · · · , Yn 相互独立
∑n

i=1 Y
2
i =

∑n
i=1 X

2
i ，

Y1 =
n∑

i=1

Xi/
√
n =

√
n X̄

Yj =
n∑

k=1

ajkXk, j = 1, 2, · · · , n

而 Y = AX ∼ N(Aθ,AIAT )，故易知 Y1 ∼ N(
√
nθ, 1) 以及 Yj ∼ (0, 1), j = 1, 2, · · · , n。所以

f(y1, · · · , yn|y1) =
f(y1, · · · , yn)

fY1(y1)
=

(2π)−
n
2 exp

{
−1

2

∑n
i=2 y

2
i − 1

2
(y1 −

√
nθ)2

}
(2π)−

1
2 exp

{
−1

2
(y1 −

√
nθ)2

}
= (2π)−

n−1
2 exp

{
−1

2

n∑
i=2

y2i

}

与 θ 无关，即 T = X̄ = Y1/
√
n 为充分统计量。
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7.2 因子分解定理

定理 7.1 (因子分解定理) 设样本 X = (X1, · · · , Xn)
T ∈ Rn 的概率函数 f(x; θ) 依赖于参数 θ，

T = T (X) 是一个统计量。

T 为充分统计量 ⇔ f(x; θ) 可分解为 f(x; θ) = g(T (x), θ)h(x)

这里概率函数是指：若 X 连续，则 f 为概率密度函数；若 X 离散，则 f(x, θ) = Pθ(X1 =

x1, · · · , Xn = xn) 为概率分布。

证明 (离散情形⇐) 已知 f(x, θ) 可以分解，需证

Pθ(X = x|T (x) = t) =
P (X = x,T (x) = t)

P (T (x) = t)
=

P (T (x) = t|X = x)P (X = x)

P (T (x) = t)
(18)

与 θ 无关（等号成立是因为 Bayes 变换 / 条件概率定义）。

记集合 At = {x : T (x) = t}，注意到当 X = x 已知时，T (x) 也已知，从而对于 P (T (x) =

t|X = x) 只能为 1 或 0。设示性函数 IA(ω) = 1 当 ω ∈ A 否则 0。于是有

P (T (x) = t|X = x) = I{T (x)=t}(x) = IAt(x) ∈ {0, 1} (19)

由全概率公式，以及 f(x, θ) 可以分解，即

P (X = x) = g(T (x), θ)h(x) (20)

可知

P (T (x) = t) =
∑
y∈X

P (T (y) = t|X = y)P (X = y)

=
∑
y∈X

I{T (y)=t}(y) · g(T (y), θ)h(y)

=
∑

y∈{x:T (x)=t}

g(T (y), θ)h(y)

=
∑
y∈At

g(t, θ)h(y)

将上式和式 19 和 20 代入式 18 可得

Pθ(X = x|T (x) = t) =
I{T (x)=t}(x) · g(T (x), θ)h(x)∑

y∈At
g(t, θ)h(y)

=
g(t, θ)h(x)∑

y∈At
g(t, θ)h(y)

=
h(x)∑

y∈At
h(y)

与 θ 无关，故 T 是充分统计量。

证明 (离散情形⇒) 已知 T 为充分统计量，需证 f(x, θ) 可分解。由于 T 为充分统计量，所以

Pθ(X = x|T (x) = t) = P (X = x|T (x) = t) := h(x)

与 θ 无关。由条件概率定义有

f(x, θ) = Pθ(X = x) = P (X = x|T (x) = t) · Pθ(T (x) = t) := h(x) · g(T (x), θ)

其中 Pθ(T (x) = t) := g(T (x), θ)。综上，f(x, θ) 可分解为 g(T (x), θ)h(x)。
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证明 (连续情形⇐) 作一一对应的变换

X = (X1, · · · , Xn)
T −→ (T ,W ) = (T1, · · · , Tk,W1, · · · ,Wn−k)

T

于是有

Xi = Xi(T1, · · · , Tk,W1, · · · ,Wn−k), i = 1, 2, · · · , n

Tj = Tj(X1, · · · , Xn), j = 1, 2, · · · , k

Wl = Wl(X1, · · · , Xn), l = 1, 2, · · · , n− k

于是变换的 Jacobi 行列式的绝对值为

|J | =
∣∣∣∣det( ∂(x1, · · · , xn)

∂(t1, · · · , tk, w1, · · · , wn−k)

)∣∣∣∣ ≜ J(t,w)

由于需证明 ⇐，故已知 f(x; θ) 可分解为 f(x; θ) = g(T (x), θ)h(x) := g(t, θ)h(x)，于是，我们可

以得到 T ,W 的联合密度分布为

fT ,W (t,w) = g(t, θ)h(x(t,w)) · J(t,w) := g̃(t, θ)h̃(t,w)

其中 g̃(t, θ) = g(t, θ) 而 h̃(t,w) = h(x(t,w)) · J(t,w)。于是有在 T 下的条件概率为

fW |T (w|t) = fT ,W (t,w)

fT (t)
=

fT ,W (t,w)´
y
fT ,W (t,y) dy

=
g̃(t, θ)h̃(t,w)´

y
g̃(t, θ)h̃(t,y) dy

=
h̃(t,w)´

y
h̃(t,y) dy

与 θ 无关，所以 T 为充分统计量。

证明 (连续情形⇒) 已知 T 为充分统计量，则在 T = t 条件下的概率函数与 θ 无关。由之前的

推导，我们知 T ,W 的联合密度分布为

fT ,W (t,w) = fW |T (w|t)fT (t) ≜ r(t,w)g(T (x), θ)

其中 r(t,w) = fW |T (w|t) 由 T 为充分统计量，故 r(t,w) 与 θ 无关，而 g(T (x), θ) = fT (t)。

根据变换 Tj = Tj(X1, · · · , Xn) 和 Wl = Wl(X1, · · · , Xn) 我们同样有变换的 Jacobi 行列式的

绝对值为

|J̃ | =
∣∣∣∣det(∂(t1, · · · , tk, w1, · · · , wn−k)

∂(x1, · · · , xn)

)∣∣∣∣ ≜ J̃(x)

于是 X 的概率密度函数为

f(x, θ) = fT ,W (t(x),w(x)) · J̃(x) = r(t(x),w(x))g(T (x), θ) · J̃(x) := g(T (x), θ)h(x)

其中 h(x) = r(t(x),w(x))J̃(x)，即 f(x, θ) 可分解为 g(T (x), θ)h(x)。命题证毕。

推论 9 设 T = T (x) 是 θ 的充分统计量。S = φ(T ) 为单值可逆函数，则 S 也是 θ 的充分统计量。
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证明 (充分统计量定义) 由于 S = φ(T ) 为单值可逆函数，故

{X : T (X) = t0} = {X : φ−1(S(X)) = t0} = {X : S(X) = φ(t0) := s0}

是相同事件，于是对于任何事件 A 有

P (A|T = t0) = P (A|S = s0)

而 T 是充分统计量，故 P (A|S = s0) 与 θ 无关，根据充分统计量的定义 7.1 知 S 也是充分统计

量。

证明 (因子分解定理) 因为 T = T (X) 为 θ 的充分统计量，所以概率函数 f 可分解

f(x, θ) = g(T (x), θ)h(x)

又因为 φ 为单值可逆函数，故存在反函数 φ−1，由 S(X) = φ(T (X)) 有

T (x) = φ−1(S(x))

代入 f(x, θ) 有关系式

f(x, θ) = g(φ−1(S(x)), θ)h(x) := g̃(S(x), θ)h(x)

所以，由因子分解定理 7.1 知，S(X) = φ(T (X)) 也是 θ 的充分统计量。

例 7.3 设X = (X1, · · · , Xn)
T 为从正态总体N(a, σ2)中抽取的简单随机样本，令 θ = (a, σ2)，则

(X̄, S2) 为 θ 的充分统计量。

证明 样本 X 的联合密度分布为

f(x,θ) = (2π)−n/2σ−n exp

{
− 1

2σ2

n∑
i=1

(xi − a)2

}

= (2π)−n/2σ−n exp

{
− 1

2σ2

(
n∑

i=1

x2
i − 2a

n∑
i=1

xi + na2

)}
= g(T (x),θ)h(x)

其中 h(x) ≡ 1，由因子分解定理 7.1 可知 T = T (X) = (
∑n

i=1 Xi,
∑n

i=1 X
2
i ) 为充分统计量。又

因为存在变换 (
X̄

S2

)
=

(
1
n

0

− 1
n(n−1)

1
n−1

)(∑n
i=1 Xi∑n
i=1 X

2
i

)
≜ AT

由于 |A| ̸= 0 可逆，故是一一变换。由推论 9 可知 (X̄, S2) 也是 θ 的充分统计量。
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7.3 极小充分统计量

定义 7.2 设 T = T (X) 是分布族 F 的充分统计量，若对 F 的任一充分统计量 S = S(X)，存在

一个函数 qS(·) 使得

T (X) = qS(S(X))

则称 T (X) 是此分布族的极小充分统计量。

例 7.4 设 X = (X1, · · · , Xn)
T 为从正态总体 N(µ, σ2) 中抽取的简单随机样本，则

T =
(∑n

i=1
Xi,
∑n

i=1
X2

i

)
为 θ = (µ, σ2) 的极小充分统计量。

证明 对任一充分统计量 S = S(X)，由因子分解定理 7.1 可分解联合密度函数为

fX(x,θ) = (2πσ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2

}
= g(S(x),θ)h(x) (21)

其中 h(x) = 1。上式对任意 θ 都成立。

于是，我们取 θ1 = (0, 1), θ2 = (1, 1) 于是有

fX(x,θ1)

fX(x,θ2)
=

(2π)−n/2 exp
{
−1

2

∑n
i=1 x

2
i

}
(2π)−n/2 exp

{
−1

2

∑n
i=1(xi − 1)2

} := G(
∑n

i=1
Xi)

而由式 21 可知
fX(x,θ1)

fX(x,θ2)
=

g(S(x),θ1)h(x)

g(S(x),θ2)h(x)
:= H(S(X))

所以

G(
∑n

i=1
Xi) = H(S(X)) ⇒

∑n

i=1
Xi = G−1(H(S(X))) ≜ qS(S(X))

其中 qS(·) = G−1(H(·))。

类似地，取 θ3 = (0, 1), θ4 = (0, 2) 有∑n

i=1
X2

i = G̃−1

(
g(S(x),θ3)h(x)

g(S(x),θ4)h(x)

)
:= G̃−1(H̃(S(X))) ≜ q̃S(S(X))

其中 q̃S(·) = G̃−1(H̃(·))。

综上，根据极小充分统计量的定义 7.2 可知，T = (
∑n

i=1 Xi,
∑n

i=1 X
2
i ) 为 θ = (µ, σ2) 的极小

充分统计量。

定理 7.2 (*) 设 T 为样本空间 X 上的充分统计量，则有以下两条陈述等价：

T 为极小充分统计量。

对任一充分统计量 S 有 S(x) = S(y) ⇒ T (x) = T (y) x, y ∈ X
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证明 (*) (1) 先证 ⇒：已知 T 为极小充分统计量。对任一充分统计量 S 有

T (x) = qS(S(x)), ∃ qS(·), ∀ x ∈ X

于是对 ∀ x, y ∈ X ，若 S(x) = S(y)，则

T (x) = qS(S(x)) = qS(S(y)) = T (y)

即 ⇒ 成立。

(2) 下面证 ⇐：已知 S(x) = S(y) ⇒ T (x) = T (y)。样本空间为 X ，统计量为 S : X → S

其中 S := {S(x) : x ∈ X }。对任意 s ∈ S 定义原像

Es = S−1({s}) = {x ∈ X : S(x) = s}

那么定义集族（集合的集合）E = {Es : s ∈ S }，其中 Es ∈ S 为集合。由于 S 为充分统计量，

不平凡地有 Es ̸= ϕ。于是我们构造选择映射 r 为

r : S → E := ∪s∈SEs, s.t. r(s) ∈ Es, ∀ s ∈ S (22)

注意到Es 的定义，有对 ∀ x ∈ ∪s∈SEs，即 ∃Es0 使得 x ∈ Es0 = {x ∈ X : S(x) = s0} ⇒ x ∈ X ，

所以 ∪s∈SEs ⊆ X 。反过来，对 ∀ x ∈ X 记 s = S(x)，则 x ∈ Es，于是 x ∈ ∪s∈SEs。所以

X ⊆ ∪s∈SEs。最终有 ∪s∈SEs = X 。所以式 22 中映射 r 定义为

r : S → X , s.t. r(s) ∈ Es = {x : S(x) = s}, ∀ s ∈ S

即此时 r(s), s ∈ S 满足 S(r(s)) = s。

回到原题，对任意 s ∈ S ，任意取 xs ∈ Es 定义映射

g(s) = T (xs)

即 g : S → T := T (X )。断言：g 是定义良好的，即每一个 s 都有唯一的输出 g(s)。断言的证

明：对于 xs, x
′
s ∈ Es，有 S(xs) = S(x′

s) = s，根据条件有 T (xs) = T (x′
s)，即 g(s) 的值唯一（即

只要 s 的值确定了，对于任意 xs ∈ Es，都有 T (xs) = g(s) 唯一）。

那么，对于任一充分统计量 S(x)，有 qS(·) = g(·) 使得

T (x) = g(S(x)) := qS(S(x))

即 T 为极小充分统计量。

定理 7.3 设 X1, · · · , Xn
i.i.d.∼ f(x, θ), θ ∈ Θ，若下面等价条件成立：

f(x, θ)

f(y, θ)
不依赖于θ ⇔ T (x) = T (y)

则 T 为极小充分统计量。
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证明 (*) 分 2 步证明，先证 T 为充分统计量，再证 T 极小。

(1) 先证 T 为充分统计量。设样本空间为 X ，统计量为 T : X → T 其中 T := {T (x) : x ∈
X }。对任意 t ∈ T 定义原像

Ft = T−1({t}) = {x ∈ X : T (x) = t}

那么定义集族（集合的集合）F = {Ft : t ∈ T }，其中 Ft ∈ F 为集合。由于 T 的定义，不平凡

地有 Ft ̸= ϕ。于是我们构造选择映射 h 为

h : T → F := ∪t∈T Ft, s.t. h(t) ∈ Ft, ∀ t ∈ T (23)

注意到 Ft 的定义，有对 ∀ x ∈ ∪t∈T Ft，即 ∃ Ft0 使得 x ∈ Ft0 = {x ∈ X : T (x) = t0} ⇒ x ∈ X ，

所以 ∪t∈T Ft ⊆ X 。反过来，对 ∀ x ∈ X 记 t = T (x)，则 x ∈ Ft，于是 x ∈ ∪t∈T Ft。所以

X ⊆ ∪t∈T Ft。最终有 ∪t∈T Ft = X 。所以式 23 中映射 h 定义为

h : T → X , s.t. h(t) ∈ Ft = {x : T (x) = t}, ∀ t ∈ T

即此时 h(t), t ∈ T 满足 T (h(t)) = t。

回到原问题，取 y = h(T (x))，有 T (y) = T (x) 根据题目条件知 f(x, θ)/f(y, θ) 与 θ 无关，有

f(x, θ) =
f(x, θ)

f(y, θ)
· f(y, θ) = ϕ(x, h(T (x))) · f(h(T (x)), θ) := g(T (x), θ)h(x)

其中 g(T (x), θ) = f(h(T (x)), θ) 而 h(x) = ϕ(x, h(T (x)))，由因子分解定理 7.1 可知，T 为充分统

计量。

(2)再证T 为极小充分统计量。对任意S(x)为充分统计量，可以分解 f(x, θ) = g(S(x), θ)h(x)，

于是若有 S(x) = S(y)，有
f(x, θ)

f(y, θ)
=

g(S(x), θ)h(x)

g(S(y), θ)h(x)
=

h(x)

h(y)

与 θ 无关。那么根据条件有 T (x) = T (y)。即 S(x) = S(y) ⇒ T (x) = T (y)，其中 T, S 均为充分

统计量。根据定理 7.2 可知 T 为极小充分统计量。

例 7.5 设 X1, · · · , Xn
i.i.d.∼ U(0, θ)，试证：T (X) = X(n) 是极小充分统计量。其中 X(n) 代表第 n

个次序统计量。

证明 对任意 X = (X1, · · · , Xn) 和 Y = (Y1, · · · , Yn) 均是来自 U(0, θ) 的简单随机样本，则有它

们的密度函数为

fX(x, θ) =
1

θn
· I(0 < x(1) ≤ x(n) < θ)

fY (y, θ) =
1

θn
· I(0 < y(1) ≤ y(n) < θ)

于是有 fX(x,θ)
fY (y,θ)

与 θ 无关 ⇒ X(n) = Y(n)，否则取 θ 在 X(n) 和 Y(n) 之间。反过来，若 X(n) = Y(n)，

则有 fX(x,θ)
fY (y,θ)

与 θ 无关。根据定理 7.3 可知，T = X(n) 为极小充分统计量。
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定理 7.4 设样本空间 X 上的指数族为 F = {f(x, θ), θ ∈ Θ}，密度函数可写作

f(x, θ) = C(θ) exp

{
k∑

i=1

Qi(θ)Ti(x)

}
h(x)

若 (T1(x), T2(x), · · · , Tk(x)) 以概率为 1 线性无关，(1, Q1(θ), Q2(θ), · · · , Qk(θ)) 以概率为 1 线性

无关，则 (T1(x), T2(x), · · · , Tk(x)) 是 θ 的极小充分统计量。

证明 (*) 注意到
f(x, θ)

f(y, θ)
= exp

{
k∑

i=1

Qi(θ) · (Ti(x)− Ti(y))

}
h(x)

h(y)

(1) 若 T (x) = T (y)，又因为 (T1(x), T2(x), · · · , Tk(x)) 以概率为 1 线性无关，故 T (·) ̸≡ c 常

值。则有
f(x, θ)

f(y, θ)
= exp

{
k∑

i=1

Qi(θ) · 0

}
h(x)

h(y)
=

h(x)

h(y)

与 θ 无关。

(2) 若 f(x, θ)/f(y, θ) 与 θ 无关，则有

exp

{
k∑

i=1

Qi(θ) · (Ti(x)− Ti(y))

}
h(x)

h(y)
= A(x, y)

⇒
k∑

i=1

Qi(θ) · (Ti(x)− Ti(y)) + log
h(x)

h(y)
= logA(x, y)

⇒
(
log

h(x)

h(y)
− logA(x, y)

)
· 1 +

k∑
i=1

Qi(θ) · (Ti(x)− Ti(y)) = 0

因为 (1, Q1(θ), Q2(θ), · · · , Qk(θ)) 以概率为 1 线性无关，即在 θ 的非零测集上，有
log

h(x)

h(y)
− logA(x, y) = 0

Ti(x)− Ti(y) = 0

即 T (x) = T (y)。

综上，根据定理 7.3 可知 (T1, · · · , Tk) 为极小充分统计量。

例 7.6 设 X1, · · · , Xn
i.i.d.∼ N(µ, σ2)。试证：T (X) = (

∑n
i=1 Xi,

∑n
i=1 X

2
i ) 为极小充分统计量。

证明 (*) 联合概率密度函数可写作

f(x,θ) = (2πσ2)−
n
2 e

−nµ2

2σ2 exp

{
µ

σ2

n∑
i=1

xi + (− 1

2σ2
)

n∑
i=1

x2
i

}

(1) 下面证明 T1 =
∑n

i=1 Xi, T2 =
∑n

i=1 X
2
i 几乎处处线性无关。设 λ1, λ2 使得

λ1

n∑
i=1

Xi + λ2

n∑
i=1

X2
i = 0
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对几乎处处 X = (X1, · · · , Xn) ∈ Rn。若 λ1, λ2 ̸= 0，则这个条件一定无法对整个 Rn 满足，所以

对于 X ∈ Rn 无解，即 P (λ1T1(X) + λ2T2(X) = 0) = 0 ̸= 1。故 λ1 = λ2 = 0，即 T1, T2 几乎处

处线性无关。

(2) 下面证明 (1, Q1, Q2) 几乎处处线性无关。这里

Q1(θ) =
µ

σ2
Q2(θ) = − 1

2σ2

设 a0, a1, a2 满足

a0 + a1 ·
µ

σ2
+ a2 · (−

1

2σ2
) = 0

⇒ a0 · 2σ2 + a1 · 2µ− a2 = 0

对任意的 µ ∈ R, σ2 ∈ {0} ∪R+ 几乎处处成立。固定 σ2 令 µ 任意取值，则 a1 = 0；固定 µ 令 σ2

任意取值，则 a0 = 0；所以最后 a0 = a1 = a2 = 0，即 (1, Q1, Q2) 几乎处处线性无关。

综上，根据定理 7.4 可知，T (X) 是极小充分统计量。

8 完全统计量

8.1 定义和示例

定义 8.1 (完全统计量) 设 F = {f(x, θ) : θ ∈ Θ} 为一分布族。Θ 为参数空间。设 T = T (X) 为

一统计量，若对任何满足条件

Eθ{φ(T (X))} = 0, ∀ θ ∈ Θ (24)

的 φ(T (X)) 都有

Pθ{φ(T (X)) = 0} = 1, ∀ θ ∈ Θ (25)

则称 T (X) 为一完全统计量（complete statistic）。

由定义 8.1 可知，若 T (X) 是完全统计量，则它的任一可测函数 δ(T ) 也是完全统计量。

注 为简单计，设统计量 T (X) 有密度函数 gθ(t) 则式 24 可写作
ˆ

φ(t)gθ(t) dt = 0, ∀ θ ∈ Θ (26)

即可视作“φ 与 gθ 正交”。于是式 26 ⇒ 式 25 可视作“若 φ 与函数系 {gθ : θ ∈ Θ} 正交，则 φ 必为

0”。

例 8.1 设 X = (X1, · · · , Xn) 为从总体 b(1, θ) 中抽取的简单随机样本，则 T (X) =
∑n

i=1 Xi 是完

全统计量。
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证明 显然 T (X) ∼ b(n, θ)，故有

P (T (X) = k) =

(
n

k

)
θk(1− θ)k, k = 0, 1, · · · , n

设 φ(t) 为任一实函数，满足 Eθ{φ(T )} = 0, θ ∈ (0, 1) 此即
n∑

k=0

φ(k)

(
n

k

)
θk(1− θ)k = 0

⇔
n∑

k=0

φ(k)

(
n

k

)(
θ

1− θ

)k

= 0

令 δ = θ/(1− θ) 则上式等价于
n∑

k=0

[
φ(k)

(
n

k

)]
δk = 0, ∀ δ ∈ R+

左边是关于 δ 的多项式，对 ∀ δ 均为 0，则系数为 0，即 φ(k)
(
n
k

)
= 0。即有 φ(k) = 0, ∀ k =

0, 1, · · · , n，而 {k : k = 0, 1, · · · , n} 为 T 的支撑集。所以 Pθ(φ(T ) = 0) = 1 即 φ(T ) = 0, a.s. Pθ。

由完全统计量的定义 8.1 可知 T (X) 是完全统计量。

例 8.2 设 X = (X1, · · · , Xn) 是从均匀分布 U(0, θ) 中抽取的简单随机样本，则 T (X) = X(n) =

max{X1, · · · , Xn} 是完全统计量。

证明 由次序统计量可知 T (X) = X(n) 的概率密度函数为

gθ(t) =
ntn−1

θn
· I(0,θ)(t)

设 φ(t) 为任一实函数，满足 Eθ{φ(T )} = 0 此即

n

θn

ˆ θ

0

φ(t)tn−1 dt = 0, ∀ θ > 0

去除不相关项后，两边同时对 θ 求导得

φ(θ)θn−1 = 0 ⇔ φ(θ) = 0, ∀ θ > 0

即 φ(T ) = 0 对任意 T > 0，故由定义可知 T (X) = X(n) 为完全统计量。

例 8.3 设 X = (X1, · · · , Xn) 是从 N(θ, θ2) 中抽取的简单随机样本，则 T (X) = (X̄, S2) 不是完

全统计量。

证明 由正态样本的性质可知

Eθ{X̄} = θ Eθ{S2} = θ2 Eθ{X̄2} = Dθ{X̄}+ (Eθ{X̄})2 = (1 + 1/n)θ2

于是，构造函数 φ(T ) = φ(T1, T2) = T 2
1 − (1 + 1/n)T2。由上式，代入计算有

Eθ{φ(T (X))} = Eθ{φ(X̄, S2)} = Eθ{X̄2} − (1 + 1/n)Eθ{S2} = 0

但是

Pθ(φ(T (X)) = 0) = Pθ(φ(X̄, S2)) = Pθ(X̄
2 = (1 + 1/n)S2) ̸= 1

因为 X̄2 不可能以概率为 1 等于 (1 + 1/n)S2。所以由定义知，T (X) = (X̄, S2) 不是完全统计

量。
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8.2 指数族中统计量的完全性

定理 8.1 设样本 X = (X1, · · · , Xn) 的概率函数

f(x,θ) = C(θ) exp

{
k∑

i=1

θiTi(x)

}
h(x), θ = (θ1, · · · , θk) ∈ Θ∗

为指数族的自然形式。令 T (X) = (T1(X), · · · , Tk(X))，若自然参数空间 Θ∗ 作为 Rk 的子集有

内点，则 T (X) 是完全统计量。

注 指数族有内点 ⇒ 完全统计量；但没有内点 ̸⇒ 不是完全统计量。

定义 8.2 (内点) 设 A ⊆ Rk，若 ∃ r > 0 使得

B(x, r) = {y ∈ Rk : ||y − x|| < r}

有 B(x, r) ⊆ A，则称 x 为 A 中一个内点。

例 8.4 设 X = (X1, · · · , Xn) 是从 N(µ, σ2) 中抽取的简单随机样本，参数空间 Θ = {θ = (a, σ2) :

a ∈ R, σ2 ∈ R+}，则 (X̄, S2) 是完全统计量。

证明 由例 7.6 可知 X 的分布属于指数族，其自然形式为

f(x,φ) = C∗(φ) exp {φ1T1(x) + φ2T2(x)}h(x)

其中 h(x) ≡ 1, φ1 = a/σ2, φ2 = −1/2σ2, φ = (φ1, φ2)，于是自然参数空间为

Θ∗ = {(φ1, φ2) : φ1 ∈ R, φ2 < 0}

故 Θ∗ 作为 R2 的子集有内点，由定理 8.1 可知 (T1(X), T2(X)) = (
∑n

i=1 Xi,
∑n

i=1 X
2
i ) 是完全统

计量，而 T ∗(X) = (X̄, S2) 作为 (T1(X), T2(X)) 的函数也易证为完全统计量。

例 8.5 设 X = (X1, · · · , Xn) 是从均匀分布 U(θ − 1/2, θ + 1/2) 中抽取的简单随机样本，则

T (X) = (X(1), X(n)) 是充分统计量，但不是完全统计量。

证明 容易得到 X 的联合密度函数为

f(x, θ) = I(θ − 1/2 < x(1) ≤ x(n) < θ + 1/2) := g(T (x), θ)h(x)

由因子分解定理 7.1 可知 T (X) = (X(1), X(n)) 是充分统计量。

证明 T (X) 不是完全统计量，只需构造函数 φ(t) 使得 Eθ{φ(t)} = 0 但“φ(t) = 0 a.s. Pθ 不

成立”即可。

令 Yi = Xi − (θ − 1/2) 则有 Yi
i.i.d.∼ U(0, 1) 与 θ 无关。所以有 Z = X(n) −X(1) = Y(n) − Y(1)

的分布也与 θ 无关。故此时 Z 的分布确定，一定能找到常数 a < b 使得

P (Z < a) = P (Z > b) > 0
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成立。于是，我们构造函数

φ(Z) = I(−∞,a)(Z)− I(b,+∞)(Z)

其中 Z = X(n) −X(1) = T2 − T1。此时满足

Eθ{φ(T )} = Eθ{φ(Z)} = P (Z < a)− P (Z > b) = 1− 1 = 0

但 φ(·) ̸≡ 0 即 φ(t) = 0 a.s. Pθ 不成立，所以 T (X) 不是完全统计量。

8.3 有界完全统计量及 Basu定理

定义 8.3 (有界完全统计量) 若对任何满足

Eθ{φ(T (X))} = 0, ∀ θ ∈ Θ

的有界（或 a.s. 有界）的函数 φ(·) 都有

Pθ{φ(T (X)) = 0} = 1, ∀ θ ∈ Θ

则称 T (X) 为有界完全统计量。

由有界完全统计量的定义 8.3 可知，一个“完全统计量”必为“有界完全统计量”，反之不必对。

定理 8.2 (Basu 定理) 设 F = {f(x, θ) : θ ∈ Θ} 为一分布族，Θ 是参数空间。样本 X =

(X1, · · · , Xn) 是从 F 中抽取的简单随机样本，设 T (X) 是一有界完全统计量，且是充分统计

量。若随机变量 V (X) 的分布与 θ 无关，则对任意 θ ∈ Θ，V (X) 和 T (X) 相互独立。

推论 10 (指数族中的 Basu定理) 设样本 X 的分布族为指数族，即

f(x,θ) = C(θ) exp

{
k∑

j=1

θjTj(x)

}
h(x)

而自然参数空间 Θ∗ 作为 Rk 的子集有内点。若随机变量 V (X) 的分布与 θ 无关，对任何 θ，则

V (X) 与 T (X) = (T1(X), · · · , Tk(X)) 相互独立。

例 8.6 设 X = (X1, · · · , Xn) 是从正态总体 {N(0, σ2) : σ > 0} 中抽取的简单随机样本，则

T (X) =
∑n

i=1 X
2
i 与随机变量

∑n
i=1 λiX

2
i /
∑n

i=1 X
2
i 独立，此处 λ1, · · · , λn 为任意实数。

证明 由正态分布 N(0, σ2) 为指数族，且自然参数空间 Θ∗ = {θ = −1/2σ2 : θ < 0} 作为 R1 的子

集有内点，故易证 T (X) =
∑n

i=1 X
2
i 是充分完全统计量。

记 Yi = Xi/σ 则 Yi
i.i.d.∼ N(0, 1) 与 θ 无关，故

V (X) =

∑n
i=1 λiX

2
i∑n

i=1 X
2
i

=

∑n
i=1 λiY

2
i∑n

i=1 Yi

的分布也与 θ 无关。由 Basu 定理 8.2 可知 T (X) 与 V (X) 独立。
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