
HW1第一次作业解答

更新：2026年 1月 9日

Exercise 1

利用切比雪夫不等式求一枚均匀硬币需抛掷多少次才能使样本均值 X̄ 落在 0.4和 0.6之间

的概率至少为 0.9（此处 Xi = 1表示抛掷硬币出现正面，否则 Xi = 0, i = 1, 2, · · · , n）？若用中
心极限定理计算这个问题，需抛掷的次数又是多少？

定理 0.1 (Chebyshev 不等式) 设随机变量 X 有有限的期望 µ = E(X) < ∞ 和有限方差 σ2 =

V ar(X) < ∞，则对任意 ϵ > 0，均有下列的不等式成立

P (|X − µ| ≥ ϵ) ≤ σ2

ϵ2

证明 设 p(x)为 X 的概率密度函数（非负），于是有

P (|X − µ| > ϵ) =

ˆ
|x−µ|>ϵ

p(x) dx

因为 |X − µ| ≥ ϵ所以 (x−µ)2

ϵ2 ≤ 1，故
ˆ
|x−µ|>ϵ

p(x) dx ≤
ˆ
|x−µ|>ϵ

(x− µ)2

ϵ2
p(x) dx

扩大积分区域，有 ˆ
|x−µ|>ϵ

(x− µ)2

ϵ2
p(x) dx ≤ 1

ϵ2

ˆ ∞

−∞
(x− µ)2p(x) dx

而根据方差的定义，得到

P (|X − µ| > ϵ) ≤ 1

ϵ2

ˆ ∞

−∞
(x− µ)2p(x) dx =

σ2

ϵ2

定理证毕。

解答 设总共投掷了 n次硬币，其结果分别为 X1, X2, · · · , Xn，设每次硬币正面朝上的概率为 p

显然 Xi
i.i.d.∼ Bernoulli(p)。于是均值 X̄ =

∑n
i=1 Xi/n的期望和方差分别为

E(X̄) =
1

n
· nE(X1) = p V ar(X̄) =

1

n2
· nV ar(X1) =

p(1− p)

n



(1)由 Chebyshev不等式 0.1可知

P (|X̄ − 0.5| ≥ 0.1) ≤ V ar(X̄)

0.12
=

p(1− p)/n

0.12

若硬币均匀，则 p = 0.5，所以 P (|X̄ − 0.5| ≥ 0.1) = (0.52/n)/0.12 = 25/n，于是

P (|X̄ − 0.5| < 0.1) = 1− 25

n
≥ 0.9

解得 nmin = 250。

(2)由中心极限定理，当 n较大时

X̄ − 0.5√
V ar(X̄)

=
X̄ − 0.5√
0.52/n

·∼ N(0, 1)

所以

P (|X̄ − 0.5| < 0.1) ≈ 2Φ

(
0.1√
0.52/n

)
− 1 = 2Φ(0.2

√
n)− 1

其中 Φ(·)为标准正态分布的分布函数。至少为 0.9，故

2Φ(0.2
√
n)− 1 ≥ 0.9

解得 n ≥ 67.64，即 nmin = 68。

Exercise 2

设X1, X2, · · · , Xn为从下列总体中抽取的简单样本，利用特征函数试求样本均值 X̄的分布：

(1) 参数为 λ的 Poisson总体 P (λ)

(2) 参数为 λ的指数分布 Exp(λ)

解答 (1) Poisson分布 P (λ)的特征函数为

ϕ(t) = exp(λ(eit − 1))

而 X1, X2, · · · , Xn是简单样本，故它们互相独立，于是有 nX̄ =
∑n

k=1 Xk 的特征函数

ϕnX̄ =
n∏

k=1

ϕXi(t) =
n∏

k=1

exp(λ(eit − 1)) = exp
(
nλ(eit − 1)

)

恰为 P (nλ)的特征函数。而随机变量的分布由特征函数唯一确定，所以 nX̄ ∼ P (nλ)，其分布

列为

P (X̄ =
k

n
) =

(nλ)k

k!
e−nλ, k = 0, 1, · · ·
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解答 (2) 指数分布 Exp(λ)的特征函数为

ϕ(t) =

(
1− it

λ

)−1

与问题 (1)类似，且由特征函数的性质，我们有 X̄ =
∑n

k=1 Xk/n的特征函数

ϕX̄ =
n∏

k=1

ϕXi(t/n) =
n∏

k=1

(
1− it/n

λ

)−1

=

(
1− it

nλ

)−n

注意到 Γ(α,λ)分布的特征函数为

ϕΓ(t) =

(
1− it

λ

)−α

所以 X̄ 的分布为 Γ(n, nλ)。

注 也可以通过特征函数求出概率密度函数：当
´∞
−∞ |ϕ(t)| dt < ∞时，概率密度函数为

p(x) =
1

2π

ˆ ∞

−∞
e−itxϕ(t) dt

注 解答 (2)也可以直接通过 Exp(λ) = Γ(1,λ)快速发现结果。

Exercise 3

设 r.v. X 服从参数为 α, p的 Gamma分布 Γ(p,α)，求证

(1) Γ(p,α)的特征函数为 ϕ(t) =
(

α
α−it

)p

(2) E(X) = p/α, D(X) = p/α2

(3) 若Xi ∼ Γ(pi,α), i = 1, 2, · · · , k且X1, X2, · · · , Xk相互独立，记 p =
∑k

i=1 pi，则
∑k

i=1 Xi ∼
Γ(p,α)

(4) 若取 α = 1/2, p = n/2，则 Γ(n/2, 1/2)是 χ2
n分布。

证明 (1) 由于 X 服从参数为 α, p的 Gamma分布 Γ(p,α)，故其概率密度函数为

fX(x) =

⎧
⎪⎨

⎪⎩

αp

Γ(p)
xp−1e−αx, x > 0,

0, x ≤ 0.

所以，根据特征函数的定义，可知

ϕX(t) = E(eitX) =
ˆ ∞

0

eitx
αp

Γ(p)
xp−1e−αx dx

=
αp

Γ(p)

ˆ ∞

0

xp−1e−(α−it)x dx

=
αp

Γ(p)

1

(α− it)p

ˆ ∞

0

((α− it)x)p−1e−(α−it)x d(α− it)x
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再由 Γ函数的积分表达式

Γ(x) =

ˆ ∞

0

tx−1e−t dt

可知，原式可写作

ϕX(t) =

(
α

α− it

)p 1

Γ(p)
Γ(p)

所以，X 的特征函数为 ϕX(t) =
(

α
α−it

)p
命题证毕。

注 上面用到了下面这个结论：

对于含有复参数的积分 I(α, β)

I(α, β) =

ˆ ∞

0

xα−1e−βx dx

积分 I(α, β)收敛，当且仅当 α, β 的实部大于 0，即 R(α) > 0, R(β) > 0。且收敛时有

I(α, β) =
Γ(β)

αβ

证明 (2) 使用概率密度函数积分可求一阶矩和二阶矩

E(X) =
αp

Γ(p)

ˆ ∞

0

xpe−αx dx =
αp

αp+1Γ(p)

ˆ ∞

0

(αx)(p+1)−1e−αx dαx

=
1

α

Γ(p+ 1)

Γ(p)
=

p

α

同理，二阶矩为

E(X2) =
αp

Γ(p)

ˆ ∞

0

xp+1e−αx dx =
αp

αp+2Γ(p)

ˆ ∞

0

(αx)(p+2)−1e−αx dαx

=
1

α2

Γ(p+ 2)

Γ(p)
=

p(p+ 1)

α2

于是，方差为

D(X) = E(X2)− (E(X))2 =
p(p+ 1)

α2
−
( p
α

)2
=

p

α2

综上，命题证毕。

注 也可以使用矩母函数计算。已知特征函数 ϕX(t)，所以可求矩母函数为 MX(t) = ϕX(−it)。

由矩母函数在 0的 n阶导M (n)
X (0)和MX(0) = 1，可求得 X 的 n阶矩 E(Xn)。

证明 (3) 由 Xi ∼ Γ(pi,α), i = 1, 2, · · · , k且 X1, X2, · · · , Xk 相互独立，可得独立和的特征函数

ϕ∑k
i=1 Xi

(t) =
k∏

i=1

ϕXi(t) =
k∏

i=1

(
α

α− it

)pi

=

(
α

α− it

)∑k
i=1 pi

=

(
α

α− it

)p

恰为 Γ(p,α)的特征函数，所以
∑k

i=1 Xi ∼ Γ(p,α)，命题证毕。
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证明 (4) 取 α = 1/2, p = n/2，则 Γ(n/2, 1/2)的概率密度函数为

fX(x) =

⎧
⎪⎨

⎪⎩

(1/2)(n/2)

Γ(n/2)
xn/2−1e−(1/2)x, x > 0,

0, x ≤ 0.

恰为 χ2
n分布的概率密度函数。所以 Γ(n/2, 1/2)是 χ2

n分布，命题证毕。

Exercise 4

设 X1 ∼ N(µ1,σ2
1), X2 ∼ N(µ2,σ2

2) 且 X1 与 X2 独立，用卷积公式证明 Y = X1 + X2 ∼
N(µ,σ2)其中 µ = µ1 + µ2, σ2 = σ2

1 + σ2
2。

我们先证明一个引理

引理 0.2 对任意正实数 a ∈ R+，我们有下面的积分结果
ˆ ∞

−∞
e−ax2

dx =

√
π

a

证明 设 y =
√
ax，则 dx = 1/

√
ady，那么原式变成
ˆ ∞

−∞
e−ax2

dx =
1√
a

ˆ ∞

−∞
e−y2 dy

而通过简单的极坐标变换即可得到
´∞
−∞ e−y2 dy =

√
π，代入即证。

回到原问题

证明 因为 X1 ∼ N(µ1,σ2
1)，X2 ∼ N(µ2,σ2

2)，所以它们的密度函数为

fX1(x) =
1√
2πσ1

exp

(
−(x− µ1)2

2σ2
1

)
, fX2(x) =

1√
2πσ2

exp

(
−(x− µ2)2

2σ2
2

)
.

且 X1和 X2相互独立，所以它们的联合概率密度为

fX1,X2(x1, x2) = fX1(x1)fX2(x2) =
1

2πσ1σ2
exp

(
−(x1 − µ1)2

2σ2
1

− (x2 − µ2)2

2σ2
2

)

由于 Y = X1, X2，记 Z = X2，那么有 X1 = Y − Z, X2 = Z，该变换的 Jacobi行列式值为

| det J | =

∣∣∣∣∣det
(

∂X1
∂Y

∂X2
∂Y

∂X1
∂Z

∂X2
∂Z

)∣∣∣∣∣ =

∣∣∣∣∣det
(

1 0

−1 1

)∣∣∣∣∣ = 1

所以 (Y, Z)的联合概率密度函数为

fY,Z(y, z) = fX1(y − z)fX2(z)

从而 Y 的概率密度函数为联合密度函数的边际分布，即

fY (y) =

ˆ ∞

−∞
fY,Z(y, z) dz =

ˆ ∞

−∞
fX1(y − z)fX2(z) dz
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代入 fX1(·)和 fX2(·)的函数表达式，可得

fY (y) =

ˆ ∞

−∞

1

2πσ1σ2
exp

(
−((y − z)− µ1)2

2σ2
1

− (z − µ2)2

2σ2
2

)
dz

化简为

fY (y) =
1

2πσ1σ2

ˆ ∞

−∞
exp

[
−
(

1

2σ2
1

+
1

2σ2
2

)
· z2 +

(
y − µ1

σ2
1

+
µ2

σ2
2

)
· z −

(
(y − µ1)2

2σ2
1

+
µ2
2

2σ2
2

)]
dz

记 ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A =
1

2σ2
1

+
1

2σ2
2

B =
y − µ1

σ2
1

+
µ2

σ2
2

C =
(y − µ1)2

2σ2
1

+
µ2
2

2σ2
2

被积的指数部分变为

−Az2 +Bz − C = −A

(
z − B

2A

)2

−
(
B2

4A
+ C

)

注意到 A > 0，而根据引理 0.2
ˆ ∞

−∞
exp

(
−A

(
z − B

2A

)2
)

dz =

√
π

A

所以原式转变为

fY (y) =
1

2πσ1σ2

√
π

A
exp

(
−B2

4A
− C

)

=
1

2πσ1σ2

√
π

1
2σ2

1
+ 1

2σ2
2

exp

⎛

⎜⎝−

(
y−µ1

σ2
1

+ µ2

σ2
2

)2

4
(

1
2σ2

1
+ 1

2σ2
2

) − (y − µ1)2

2σ2
1

− µ2
2

2σ2
2

⎞

⎟⎠

=
1

2πσ1σ2
·
√
2πσ1σ2√
σ2
1 + σ2

2

exp

⎛

⎝

⎛

⎝
σ2
2

σ2
1
(y − µ1)2 + 2(y − µ1)µ2 +

σ2
1

σ2
2
µ2
2

2(σ2
1 + σ2

2)

⎞

⎠−
(
(y − µ1)2

2σ2
1

+
µ2
2

2σ2
2

)⎞

⎠

其中指数部分可化简为

σ4
2(y − µ1)2 + 2σ2

1σ
2
2(y − µ1)µ2 + σ4

1µ
2
2 − σ2

2(σ
2
1 + σ2

2)(y − µ1)2 − σ2
1(σ

2
1 + σ2

2)µ
2
2

2σ2
1σ

2
2(σ

2
1 + σ2

2)

=
[σ4

2 − σ2
2(σ

2
1 + σ2

2)] · (y − µ1)2 + σ2
1σ

2
2 · 2(y − µ1)µ2 + [σ4

1 − σ2
1(σ

2
1 + σ2

2)] · µ2
2

2σ2
1σ

2
2(σ

2
1 + σ2

2)

=
−σ2

1σ
2
2 · [(y − µ1)2 − 2(y − µ1)µ2 + µ2

2]

2σ2
1σ

2
2(σ

2
1 + σ2

2)

= −(y − µ1 − µ2)2

2(σ2
1 + σ2

2)
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从而

fY (y) =
1

2πσ1σ2
·
√
2πσ1σ2√
σ2
1 + σ2

2

· exp
(
−(y − µ1 − µ2)2

2(σ2
1 + σ2

2)

)

=
1

√
2π
√

σ2
1 + σ2

2

· exp
(
−(y − µ1 − µ2)2

2(σ2
1 + σ2

2)

)

=
1√
2πσ

· exp
(
−(y − µ)2

2σ2

)

恰为 N(µ, σ2)分布的概率密度函数，所以 Y = X1 +X2 ∼ N(µ,σ2)，命题证毕。
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HW2第二次作业解答

更新：2026年 1月 9日

Exercise 1

设 X1, X2, · · · , Xn
i.i.d.∼ F，而 (X(1), X(2), · · · , X(n)) 是其次序统计量，已知 P (X(m) < x) =

∑n
i=m

(
n
i

)
(F (x))i(1− F (x))n−i。证明如下恒等式：

n∑

i=m

(
n

i

)
(F (x))i(1− F (x))n−i = m

(
n

m

)ˆ F (x)

0

tm−1(1− t)n−m dt

证明 记 F (x) = p ∈ [0, 1]，则原问题变为去证

n∑

i=m

(
n

i

)
pi(1− p)n−i = m

(
n

m

)ˆ p

0

tm−1(1− t)n−m dt

再记 LHS = S(p), RHS = I(p)，我们只需要证明 S(p) ≡ I(p), p ∈ [0, 1]。注意到

S ′(p) =
n∑

i=m

(
n

i

)
[ipi−1(1− p)n−i − (n− i)pi(1− p)n−i−1] (1)

而由组合数的性质

i

(
n

i

)
= n

(
n− 1

i− 1

)

(n− i)

(
n

i

)
= (n− i)

(
n

n− i

)
= n

(
n− 1

n− i− 1

)
= n

(
n− 1

i

)

代回式 1可得

S ′(p) = n
n∑

i=m

[(
n− 1

i− 1

)
pi−1(1− p)n−i −

(
n− 1

i

)
pi(1− p)n−i−1

]

= n
n∑

i=m

(
n− 1

i− 1

)
pi−1(1− p)n−i − n

n∑

i=m+1

(
n− 1

i− 1

)
pi−1(1− p)n−i

= n

(
n− 1

m− 1

)
pm−1(1− p)n−m (2)



下面考虑 I(p)的导数 I ′(p)

I ′(p) =
d

dp

[
m

(
n

m

)ˆ p

0

tm−1(1− t)n−m dt

]

= m

(
n

m

)
pm−1(1− p)n−m (3)

注意到

n

(
n− 1

m− 1

)
= n

(n− 1)!

(m− 1)!(n−m)!
=

n!

(m− 1)!(n−m)!
= m

(
n

m

)

结合式 2和 3有

S ′(p) = n

(
n− 1

m− 1

)
pm−1(1− p)n−m = m

(
n

m

)
pm−1(1− p)n−m = I ′(p), ∀ p ∈ [0, 1]

记 D(p) = S(p)− I(p), p ∈ [0, 1]，则有

D′(p) = S ′(p)− I ′(p) = 0 ∀ p ∈ [0, 1]

那么 D(·)恒为一个常值函数，不妨设 D(p) ≡ c为常数。又注意到 D(0) = S(0) − I(0) = 0，故

常值 c = 0，于是 D(p) ≡ 0，即

S(p) ≡ I(p), ∀ p ∈ [0, 1]

问题证毕。

Exercise 2

设 X1, X2, · · · , Xn
i.i.d.∼ N(a,σ2)，且 X̄ = 1

n

∑n
i=1 Xi, S2

n = 1
n

∑n
i=1(Xi − X̄)2，又设 Xn+1 ∼

N(a,σ2)且与 X1, X2, · · · , Xn独立，试求统计量

T =
Xn+1 − X̄

Sn

√
n− 1

n+ 1

的分布。

解答 首先根据 X1, X2, · · · , Xn
i.i.d.∼ N(a,σ2)我们可以得到 X̄, S2

n的分布

X̄ ∼ N(a,
σ2

n
) (4)

nS2
n

σ2
∼ χ2

n−1 (5)

又因为 Xn+1 ∼ N(a,σ2)且与 (Xi)i<n+1 独立，故 Xn+1 也与 X̄, S2
n 独立。于是根据式 4和 Xn+1

的分布可求

Z :=
Xn+1 − X̄

σ
√
(n+ 1)/n

∼ N(0, 1)

为简化式 5，记W = nS2
n/σ

2 ∼ χ2
n−1，于是根据 t分布的性质，有

T =
Xn+1 − X̄

Sn

√
n− 1

n+ 1
=

Z√
W/(n− 1)

∼ tn−1

所以，统计量 T ∼ tn−1。
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Exercise 3

设 X1, X2, · · · , Xn独立，且 Xi ∼ N(0,σ2
i ), i = 1, 2, · · · , n。定义

ξ =
n∑

i=1

(Xi − Z)2

σ2
i

其中 Z =
n∑

i=1

Xi

σ2
i

/
n∑

i=1

1

σ2
i

求 ξ的分布。

解答 记 wi = 1/σ2
i , W =

∑n
i=1 wi，于是有

ξ =
n∑

i=1

wi(Xi − Z)2, Z =
n∑

i=1

wiXi

W

化简 ξ的表达式

ξ =
n∑

i=1

wi(Xi − Z)2 =
n∑

i=1

wi(X
2
i − 2ZXi + Z2)

=
n∑

i=1

wiX
2
i − 2Z

n∑

i=1

wiXi +WZ2

=
n∑

i=1

wiX
2
i − 2Z(ZW ) +WZ2

=
n∑

i=1

wiX
2
i −WZ2

记 Yi = Xi/σi ⇒ Yi
i.i.d.∼ N(0, 1)，且

n∑

i=1

wiX
2
i =

n∑

i=1

wiσ
2
i Y

2
i =

n∑

i=1

Y 2
i

WZ =

(
n∑

i=1

wi

)
·
(

n∑

i=1

wiXi

W

)
=

n∑

i=1

wiXi =
n∑

i=1

Yi

σi

所以，ξ可以用 Yi表示为

ξ =
n∑

i=1

Y 2
i − 1

W

(
n∑

i=1

Yi

σi

)2

(6)

如此 ξ转变为标准正态的 Yi的表达，下面进行变换。

记向量 Y = (Y1, Y2, · · · , Yn)T ∈ Rn，那么根据 Yi 相互独立且标准正态，有随机向量 Y 的

分布为多元正态 Y ∼ Nn(0n, In)，其中 0n ∈ Rn, In ∈ Rn×n 分别表示 n维分量均为 0的向量和

n× n的单位阵。

作正交变换 Z = AY ∈ Rn，其中 A ∈ Rn×n为正交阵。

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

1

σ1

√
W

1

σ2

√
W

· · · 1

σn

√
W

a21 a22 · · · a2n
... ... . . . ...

an1 an2 · · · ann

⎞

⎟⎟⎟⎟⎟⎟⎠

n×n

3



A可由 Schmidt正交化构造。于是 Z ∼ Nn(A · 0n, AInAT ) = Nn(0n, In)。

由于

Z1 =

(
1

σ1

√
W

1

σ2

√
W

· · · 1

σn

√
W

)
· Y =

n∑

i=1

Yi

σi

√
W

以及
n∑

i=1

Z2
i = ZTZ = (AY )T (AY ) = Y TATAY = Y TY =

n∑

i=1

Y 2
i

代回式 6有

ξ =
n∑

i=1

Z2
i − Z2

1 =
n∑

i=2

Z2
i

而根据 Z ∼ Nn(0n, In)，知 Zi ∼ N(0, 1)且相互独立。于是，由 χ2分布的定义知 ξ ∼ χ2
n−1。

Exercise 4

设 X1, X2, · · · , Xn为取自 Poisson总体 P (λ)的样本。试证明：

X̄n − λ√
X̄n/n

的极限分布为 N(0, 1)。其中 X̄n = n−1
∑n

i=1 Xi。

证明 由于 X1, X2, · · · , Xn为取自 Poisson总体 P (λ)的样本，故

E(Xi) = D(Xi) = λ

于是，根据 Khinchin大数定律 0.1有
X̄n

P−→ λ

同理，根据 Lindeberg-Lévy中心极限定理 0.2有
√
n(X̄n − λ)√

λ

L−→ N(0, 1)

再根据 Slutsky引理 0.3有

X̄n − λ√
X̄n/n

L−→ X̄n − λ√
λ/n

=

√
n(X̄n − λ)√

λ

L−→ N(0, 1)

问题证毕。

定理 0.1 (Khinchin 大数定律) 考虑独立同分布的随机变量列 (Xi)i≥1 假设 E(|X1|) < ∞。记
X̄n = n−1

∑n
i=1 Xi且 µ = E(X1)。则

X̄n
P−→ µ

定理 0.2 (Lindeberg-Lévy中心极限定理) 考虑独立同分布的随机变量列 (Xi)i≥1记 X̄n = n−1
∑n

i=1 Xi

且 µ = E(X1)。若 σ2 = D(X1) ∈ (0,+∞)，则当 n → ∞时有
√
n(X̄n − µ)

σ
L−→ N(0, 1)

4



引理 0.3 (Slutsky引理) 令 {Xn}和 {Yn}是两个随机变量的序列，满足当 n → ∞时，

Xn
L−→ X, Yn

P−→ c

其中 c ∈ R为常数。则有：

(1) Xn ± Yn
L−→ X ± c

(2) XnYn
L−→ cX

(3) Xn/Yn
L−→ X/c

5



HW3第三次作业解答

更新：2026年 1月 9日

Exercise 1

设总体 X服从双指数分布，其分布函数为

F (x) =

⎧
⎪⎨

⎪⎩

1− exp

(
−x− µ

σ

)
, x > µ,

0, x ≤ µ.

其中 µ ∈ R, σ > 0，我们有次序统计量 X(1) ≤ X(2) ≤ · · · ≤ X(n)。试证明：

2(n− i+ 1)

σ
(X(i) −X(i−1)) ∼ χ2

2, i = 2, 3, · · · , n

证明 记总体 Y = X − µ，则 Y 的概率密度为

FY (y) = 1− exp

(
− 1

σ
y

)
I{y>0}

为指数分布 Exp(1/σ)。记 1/σ = λ即 Y ∼ Exp(λ)。记 Y 的次序统计量为 Y(1) ≤ Y(2) ≤ · · · ≤ Y(n)，

则有 X(i) −X(i−1) = Y(i) − Y(i−1) := Zi, i = 2, 3, · · · , n，特别地 Z1 = Y(1)。反解出 Y(i)有

Y(i) =
i∑

k=1

Zk, i = 1, 2, · · · , n

容易得到 Jacobi阵的行列式的绝对值为 1。

由 Y 的概率密度为 fY (y) = λe−λy，以及次序统计量的联合分布，我们有

fY(1),Y(2),··· ,Y(n)
(y(1), y(2), · · · , y(n)) = n! · fY (y(1))fY (y(2)) · · · fY (y(n))I{y(1)≤y(2)≤···≤y(n)}

= n!
n∏

i=1

λe−λy(i)I{y(1)≤y(2)≤···≤y(n)}

= n!λn exp

(
−λ

n∑

i=1

y(i)

)
I{y(1)≤y(2)≤···≤y(n)}



因为 Jacobi阵的行列式的绝对值为 1以及 y(i) =
∑i

k=1 zk，可以得到 Z1, Z2, · · · , Zn 的联合分布

为

fZ1,Z2,··· ,Zn(z1, z2, · · · , zn) = n!λn exp

(
−λ

n∑

i=1

i∑

k=1

zk

)
I∩k{zk≥0}

= n!λn exp

(
−λ

n∑

k=1

n∑

i=k

1 · zk

)
I∩k{zk≥0}

= n!λn exp

(
−λ

n∑

k=1

(n− k + 1)zk

)
I∩k{zk≥0}

注意到
∏n

k=1(n− k + 1) = n!有

fZ1,Z2,··· ,Zn(z1, z2, · · · , zn) =
n∏

k=1

λ(n− k + 1)e−λ(n−k+1)zk

其中 g(zk) = λ(n− k + 1)e−λ(n−k+1)zk 恰为 Exp(λ(n− k + 1))的概率密度函数。所以
ˆ

λ(n− k + 1)e−λ(n−k+1)zk dzk = 1

为求 Zk 边际分布，将其他 l ̸= k的 zl积分有

fZk
(z) = g(zk)

ˆ
· · ·
ˆ

zl≥0, l ̸=k

n∏

l ̸=k

λ(n− k + 1)e−λ(n−k+1)zl dz1 · · · dzk−1dzk+1 · · · dzn

= g(zk)
n∏

l ̸=k

ˆ
zl≥0

λ(n− k + 1)e−λ(n−k+1)zl dzl

= g(zk)
n∏

l ̸=k

1 = g(zk)

上面的第二个等式是因为 g(zl) ≥ 0且可积，使用 Fubini定理交换积分和乘积符号。综上，我们
有

Zk ∼ Exp(λ(n− k + 1))

由引理：若W ∼ Exp(θ)则 2θW ∼ χ2
2，我们有

2λ(n− k + 1)Zk ∼ χ2
2

又 Zi = X(i) −X(i−1)和 λ = 1/σ所以

2(n− i+ 1)

σ
(X(i) −X(i−1)) ∼ χ2

2, i = 2, 3, · · · , n

命题证毕。

Exercise 2

将指数分布写成指数族的自然形式，并求出其自然参数空间。

2



解答 指数分布 Exp(λ)的联合密度函数为

f(x;λ) = λe−λxI(0,∞)(x)

根据指数族形式的定义，有 C(λ) = λ, Q(λ) = −λ, T (x) = x, h(x) = I(0,∞)(x)。下面，令

ϕ = Q(λ)则有 λ = −ϕ，于是 C(λ) = −ϕ = C∗(ϕ)。则指数分布的指数族的自然形式为

f(x;λ) = −ϕeϕxI(0,∞)(x)

自然参数空间为

Θ∗ = {ϕ :

ˆ
X

eϕxI(0,∞)(x) dx < ∞} = {ϕ :

ˆ
x>0

eϕx dx < ∞}

积分有限，故 ϕ < 0，所以自然参数空间为 Θ∗ = {ϕ : ϕ < 0}。

Exercise 3

证明指数族的自然参数空间为凸集。即对于自然参数空间

Θ∗ =

{
θ = (θ1, θ2, · · · , θk) :

ˆ
X

exp

(
k∑

i=1

θiTi(x)

)
h(x) dx < ∞

}

其中 h(x) > 0，而 X 为样本空间。结论是：对于任意 θ1,θ2 ∈ Θ∗，设 0 < α < 1，记 θ =

αθ1 + (1− α)θ2，则 θ ∈ Θ∗。

证明 记 T (x) = (T1(x), T2(x), · · · , Tk(x))T ∈ Rk，则我们需要证明：
ˆ

X
exp

(
θTT (x)

)
h(x) dx < ∞

其中 θ = αθ1 + (1− α)θ2代入即

exp
(
θTT (x)

)
h(x) =

[
eαθ

T
1 T (x)h(x)α

]
·
[
e(1−α)θT2 T (x)h(x)1−α

]

记 p = 1/α, q = 1/(1− α)，同时记 exp
(
θTT (x)

)
h(x) := f(x)g(x)，其中

f(x) = e
1
pθ

T
1 T (x)h(x)

1
p > 0 g(x) = e

1
q θ

T
2 T (x)h(x)

1
q > 0

由于 α ∈ (0, 1) ⇒ p, q > 1且 1
p +

1
q = α + (1− α) = 1，所以由 Hölder不等式 0.2有

ˆ
X

f(x)g(x) dx ≤
(ˆ

X
f(x)p dx

)1/p(ˆ
X

g(x)q dx

)1/q

(1)

而

f(x)p =
(
e

1
pθ

T
1 T (x)h(x)

1
p

)p
= eθ

T
1 T (x)h(x)

g(x)q =
(
e

1
q θ

T
2 T (x)h(x)

1
q

)q
= eθ

T
2 T (x)h(x)

3



又因为 θ1,θ2 ∈ Θ∗，所以
ˆ

X
f(x)p dx =

ˆ
X

eθ
T
1 T (x)h(x) dx < ∞

ˆ
X

g(x)q dx =

ˆ
X

eθ
T
2 T (x)h(x) dx < ∞

由不等式 1可知 ˆ
X

f(x)g(x) dx =

ˆ
X

exp
(
θTT (x)

)
h(x) dx < ∞

即有 θ ∈ Θ∗证毕。

定理 0.1 (Young不等式) 设 a, b ≥ 0 p, q > 1满足

1

p
+

1

q
= 1

则有

ab ≤ ap

p
+

bq

q

当且仅当 ap = bq 时，等号成立。

证明 由 ϕ(x) = ex为凸函数，由凸函数的性质或 Jensen不等式

ϕ(λx1 + (1− λ)x2) ≤ λϕ(x1) + (1− λ)ϕ(x2)

令 λ = 1/p由条件 1−λ = 1/q。下面，对任意 a, b > 0取 x1 = p ln a, x2 = q ln b，由上述的 Jensen
不等式

eλp ln a+(1−λ)q ln b ≤ λep ln a + (1− λ)eq ln b

而左边

eλp ln a+(1−λ)q ln b = e
1
p ·p ln a · e

1
q ·q ln b = ab

右边

λep ln a + (1− λ)eq ln b =
1

p
· eln ap +

1

q
· eln bq =

ap

p
+

bq

q

综上

ab ≤ ap

p
+

bq

q

定理证毕。

定理 0.2 (Hölder不等式) 设 f(x), g(x)为可测函数，p, q > 1满足

1

p
+

1

q
= 1

则有 ˆ
|f(x)g(x)| dx ≤

(ˆ
|f(x)|p dx

)1/p(ˆ
|g(x)|q dx

)1/q

等号成立当且仅当存在常数 C > 0，使得对几乎处处的 x有 |f(x)|p = C|g(x)|q 成立。

4



证明 这里只证明不平凡的情形。记

A :=

ˆ
|f(x)|p dx ∈ (0, ∞), B :=

ˆ
|g(x)|q dx ∈ (0, ∞)

设函数

u(x) =
|f(x)|
A1/p

> 0, v(x) =
|g(x)|
B1/q

> 0

则容易得
´
u(x)p dx =

´
v(x)q dx = 1。由 Young不等式（定理 0.1），令 a = u(x), b = v(x)，则

u(x)v(x) ≤ u(x)p

p
+

v(x)q

q

由上式对任意的 x都成立，且 0 < u, v < ∞，故积分不等式仍成立
ˆ

u(x)v(x) dx ≤
ˆ

u(x)p dx+

ˆ
v(x)q dx = 1

即 ˆ |f(x)|
A1/p

|g(x)|
B1/q

dx = A−1/pB−1/q

ˆ
|f(x)g(x)| dx ≤ 1

代入 A,B 即有 ˆ
|f(x)g(x)| dx ≤

(ˆ
|f(x)|p dx

)1/p(ˆ
|g(x)|q dx

)1/q

定理证毕。

Exercise 4

设 r.v. X 的分布函数为 F (x)，密度函数为 f(x)，且 X1, X2, · · · , Xn
i.i.d.∼ f。证明：

ˆ
· · ·
ˆ

a<x1<···<xn<b

f(x1) · · · f(xn) dx1 · · · dxn =
1

n!
[F (b)− F (a)]n

证明 记事件 A = {X ∈ Rn : Xi ∈ (a, b) : i = 1, 2, · · · , n}和事件 B = {X ∈ Rn : a < X(1) <

· · · < X(n) < b}，其中X = (X1, X2, · · · , Xn)T 中的各个分量 Xi 为相互独立的随机变量。下面

我们严格证明：A = B。

对 ∀X ∈ A，显然有最小的 X(1) < Xi < b和最大的 X(n) > Xi > a，即有 a < X(1) < · · · <
X(n) < b，即X ∈ B，故 A ⊆ B。

对 ∀X ∈ B，则对 ∀i有 a < X(1) < Xi < X(n) < b，所以X ∈ A ⇒ B ⊆ A。

综上，有 A = B，进一步 P (A) = P (B)。而 Xi相互独立，所以

P (A) = P ({Xi ∈ (a, b) : i = 1, 2, · · · , n}) = P ({Xi ∈ (a, b)})n = [F (b)− F (a)]n

注意到 n个次序统计量相互独立，它们的联合概率密度为

fX(1),··· ,X(n)
(x(1), · · · , x(n)) = n!f(x(1)) · · · f(x(n))

5



所以

P (B) =

ˆ
· · ·
ˆ

a<x(i)<b,∀i

fX(1),··· ,X(n)
(x(1), · · · , x(n)) dx(1) · · · dx(n)

=

ˆ
· · ·
ˆ

a<x(i)<b,∀i

n!f(x(1)) · · · f(x(n)) dx(1) · · · dx(n)

=

ˆ
· · ·
ˆ

a<x1<···<xn<b

n!f(x1) · · · f(xn) dx1 · · · dxn

由 P (A) = P (B)，我们有

[F (b)− F (a)]n =

ˆ
· · ·
ˆ

a<x1<···<xn<b

n!f(x1) · · · f(xn) dx1 · · · dxn

⇒
ˆ

· · ·
ˆ

a<x1<···<xn<b

f(x1) · · · f(xn) dx1 · · · dxn =
1

n!
[F (b)− F (a)]n

命题证毕。
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HW4第四次作业解答

更新：2026年 1月 9日

Exercise 1

设X = (X1, · · · , Xn)T 且Xi
i.i.d.∼ Ge(θ)几何分布，试用两种方法证明 T (X) =

∑n
i=1 Xi是充

分统计量

充分统计量的定义

因子分解定理

证明 (利用充分统计量的定义) 由几何分布 Ge(θ)的定义以及样本的独立性，可得分布族为

F = {f(x, θ) : θ ∈ Θ = (0, 1)}

注：样本空间为X = N+ × · · ·N+。其中概率函数为

fX1,··· ,Xn(x, θ) = θn
n∏

i=1

(1− θ)xi−1

那么条件概率为

Pθ(X1 = x1, · · · , Xn = xn|T = t) =
P (X1 = x1, · · · , Xn = xn, T = t)

P (T = t)

由几何分布的分布函数可知

分子 = P (X1 = x1, · · · , Xn = xn, T = t) = P (X1 = x1, · · · , Xn = t−
∑n−1

i=1
xi)

=
(
θn−1

∏n−1

i=1
(1− θ)xi−1

)
·
(
θ(1− θ)t−

∑n−1
i=1 xi

)

= θn(1− θ)
∑n−1

i=1 (xi−1)+t−
∑n−1

i=1 xi−1 = θn(1− θ)t−n

而

分母 = P (T = t) =
∑

x∈X

∏n

i=1
(1− θ)xi−1θ · I{x:T (x)=t}(x)

=
∑

x∈{x:T (x)=t}

∏n

i=1
(1− θ)xi−1θ =

∑
x∈{x:T (x)=t}

θn(1− θ)T (x)−n

=
∑

x∈{x:T (x)=t}
θn(1− θ)t−n



将分子分母的结果代回条件概率得

Pθ(X1 = x1, · · · , Xn = xn|T = t) =
θn(1− θ)t−n

∑
x∈{x:T (x)=t} θ

n(1− θ)t−n
=

1∑
x∈{x:T (x)=t} 1

=
1

#{X :
∑n

i=1 Xi = t}

其中 #{·}代表集合元素。综上可知，条件概率 Pθ(X|T (X) = t)与参数 θ无关，故 T (X)是充

分统计量。

证明 (利用因子分解定理) 注意到

f(x, θ) = θn
∏n

i=1
(1− θ)xi−1 = θn(1− θ)

∑n
i=1(xi−1)

= θn(1− θ)T (x)−n := g(T (x), θ)h(x)

其中 h(x) ≡ 1，故由因子分解定理，T 为充分统计量。

Exercise 2

设 X = (X1, · · · , Xm)为从正态总体 N(a,σ2)中抽取的简单样本，Y = (Y1, · · · , Yn)为从正

态总体 N(b,σ2)中抽取的简单样本，且两样本独立。记 X̄ = 1
m

∑m
i=1 Xi，Ȳ = 1

n

∑n
j=1 Yj 而

S2 =
1

m+ n− 2

(
m∑

i=1

(Xi − X̄)2 +
n∑

j=1

(Yj − Ȳ )2
)

证明：T (X,Y ) = (X̄, Ȳ , S2)T 为充分统计量。

证明 由正态分布的概率密度函数和样本的独立性，我们得到分布族的概率函数为

f(x,y;θ = (a, b, σ2)T ) = (2πσ2)−n/2 exp

{
− 1

2σ2

m∑

i=1

(xi − a)2
}
(2πσ2)−n/2 exp

{
− 1

2σ2

n∑

j=1

(yj − b)2
}

= (2πσ2)−n exp

{
− 1

2σ2

(
m∑

i=1

(xi − a)2 +
n∑

j=1

(yj − b)2
)}

注意到

m∑

i=1

(xi − a)2 =
m∑

i=1

(xi − x̄+ x̄− a)2

=
m∑

i=1

(xi − x̄)2 + 2
m∑

i=1

(xi − x̄)(x̄− a) +
m∑

i=1

(x̄− a)2

=
m∑

i=1

(xi − x̄)2 + 2(x̄− a)
m∑

i=1

(xi − x̄) +m(x̄− a)2

=
m∑

i=1

(xi − x̄)2 +m(x̄− a)2

2



同理有
∑n

j=1(yj − b)2 =
∑n

j=1(yj − ȳ)2 + n(ȳ − b)2。代回概率函数有

f(x,y;θ) = (2πσ2)−n exp

{
− 1

2σ2

(
m∑

i=1

(xi − x̄)2 +m(x̄− a)2 +
n∑

j=1

(yj − ȳ)2 + n(ȳ − b)2
)}

= (2πσ2)−n exp

{
− 1

2σ2

(
(m+ n− 2)s2 +m(x̄− a)2 + n(ȳ − b)2

)}

= g(x̄, ȳ, s2; a, b, σ2)

故概率函数可分解为 f(x,y;θ) = g(T (x,y),θ)h(x,y)，其中 h(x,y) ≡ 1。由因子分解定理可知

T 是充分统计量。

Exercise 3

在指数族的自然形式下，若自然参数空间有内点，求 Cov(Ti(X), Tj(X))的表达式。

定理 0.1 设指数族的自然形式中，自然参数空间有内点，其内点集为 Θ0。对 θ ∈ Θ0，有 Ti(x)

的各阶矩均存在有限，可通过在积分号下求导算出。例如：

E(Ti(x)) = −∂ logC∗(θ)

∂θi

Cov(Ti(x), Tj(x)) = −∂2 logC∗(θ)

∂θi∂θj

证明 由概率定义
´

X f(x; θ) = 1，有关系式

1

C∗(θ)
=

ˆ
X

exp

{
k∑

j=1

θjTj(x)

}
h(x) dx (1)

对式 1两边对 θi求偏导有

− 1

C∗(θ)2
∂C∗(θ)

∂θi
=

ˆ
X

Ti(x) exp

{
k∑

j=1

θjTj(x)

}
h(x) dx (2)

注意到

E(Ti(x)) =

ˆ
X

Ti(x)C
∗(θ) exp

{
k∑

j=1

θjTj(x)

}
h(x) dx

所以

E(Ti(x)) = − 1

C∗(θ)2
∂C∗(θ)

∂θi
· C∗(θ) = −∂ logC∗(θ)

∂θi

继续对式 2关于 θj 求偏导有

2

C∗(θ)3
∂C∗(θ)

∂θi

∂C∗(θ)

∂θj
− 1

C∗(θ)2
∂2C∗(θ)

∂θi∂θj
=

ˆ
X

Ti(x)Tj(x) exp

{
k∑

l=1

θlTl(x)

}
h(x) dx (3)

3



注意到

Cov(Ti(x), Tj(x)) = E(Ti(x)Tj(x))− E(Ti(x))E(Tj(x))

=

ˆ
X

Ti(x)Tj(x)C
∗(θ) exp

{
k∑

l=1

θlTl(x)

}
h(x) dx− E(Ti(x))E(Tj(x))

代入式 2和 E(Ti(x)),E(Tj(x))的表达式得

Cov(Ti(x), Tj(x)) =

(
2

C∗(θ)3
∂C∗(θ)

∂θi

∂C∗(θ)

∂θj
− 1

C∗(θ)2
∂2C∗(θ)

∂θi∂θj

)
· C∗(θ)

−
(
− 1

C∗(θ)

∂C∗(θ)

∂θi

)(
− 1

C∗(θ)

∂C∗(θ)

∂θj

)

=
1

C∗(θ)2
∂C∗(θ)

∂θi

∂C∗(θ)

∂θj
− 1

C∗(θ)

∂2C∗(θ)

∂θi∂θj

=− ∂2 logC∗(θ)

∂θi∂θj

命题证毕。

Exercise 4

设样本X = (X1, · · · , Xn)T ∈ X 的概率函数 f(x, θ) = f(x1, · · · , xn; θ)依赖于参数 θ。如果

T = T (X)为 θ的充分统计量，设 S(X) = G(T (X))，其中 G为单值可逆函数，用因子分解定

理证明 S(X) = G(T (X))也是 θ的充分统计量。

证明 因为 T = T (X)为 θ的充分统计量，所以概率函数 f 可分解

f(x, θ) = g(T (x), θ)h(x)

又因为 G为单值可逆函数，故存在反函数 G−1，由 S(X) = G(T (X))有

T (x) = G−1(S(x))

代入 f(x, θ)有关系式

f(x, θ) = g(G−1(S(x)), θ)h(x) := g̃(S(x), θ)h(x)

所以，由因子分解定理知，S(X) = G(T (X))也是 θ的充分统计量。

4



HW5第五次作业解答

更新：2026年 1月 9日

Exercise 1

设X = (X1, · · · , Xn)
i.i.d.∼ E(θ, 1)其中概率密度函数为

f(x; θ) = e−(x−θ) · I(x > θ)

其中 θ ∈ R为位置参数。证明：T (X) = X(1)为极小充分完全统计量。

证明 分 3步证明：先证充分，再证极小，最后证完全。

(1)充分统计量 样本 (X1, · · · , Xn)的联合密度为

f(x; θ) =
n∏

i=1

e−(xi−θ) · I(xi > θ) = exp

{
−

n∑

i=1

xi + nθ

}
· I

(
min

i
xi > θ

)

= enθI
(
x(1) > θ

)
· exp

{
−

n∑

i=1

xi

}
:= g(T (x), θ)h(x)

其中 T (X) = X(1) 于是 g(T (x), θ) = enθI(x(1) > θ)，而 h(x) = exp{−
∑n

i=1 xi}。根据因子分解
定理，T (X) = X(1)为充分统计量。

(2)极小充分统计量 考虑样本X 和 Y 的联合密度的比为

f(x; θ)

f(y; θ)
=

enθI
(
x(1) > θ

)
· exp {−

∑n
i=1 xi}

enθI
(
y(1) > θ

)
· exp {−

∑n
i=1 yi}

= exp

{
−

n∑

i=1

xi +
n∑

i=1

yi

}
I
(
x(1) > θ

)

I
(
y(1) > θ

)

上式与 θ 无关，等价于 X(1) = Y(1) （否则取 θ 处于 X(1) 和 Y(1) 之间）。于是根据定理 0.1可知
T (X) = X(1)是极小充分统计量。

(2)极小充分完全统计量 首先 X(1)为次序统计量，故其概率密度为

fX(1)
(x) =

(
n

1

)[
1−
ˆ x

θ

e−(t−θ) dt

]n−1

e−(x−θ) · I(x > θ)

= ne−n(x−θ)I(x > θ)



于是对任一函数 ϕ(·)有对于任意 θ有

Eθ(ϕ(T (X))) = Eθ(ϕ(X(1))) =

ˆ ∞

θ

ϕ(x)ne−n(x−θ) dx = nenθ
ˆ ∞

θ

ϕ(x)e−nx dx

令 Eθ(ϕ(T (X))) = 0，由于 nenθ > 0有

nenθ
ˆ ∞

θ

ϕ(x)e−nx dx = 0 ⇒
ˆ ∞

θ

ϕ(x)e−nx dx = 0

等式对 θ求导得 0− ϕ(θ)e−nθ = 0。于是 ∀ θ有 ϕ(θ) ≡ 0。

综上有 Eθ(ϕ(T (X))) = 0等价于 ϕ(·) ≡ 0，即 Pθ(ϕ(T (X)) = 0) = 1。由完全统计量的定义

可知 T (X) = X(1)为极小充分完全统计量，命题证毕。

定理 0.1 设 X1, · · · , Xn
i.i.d.∼ f(x, θ), θ ∈ Θ，若下面等价条件成立：

f(x, θ)

f(y, θ)
不依赖于θ ⇔ T (x) = T (y)

则 T 为极小充分统计量。

Exercise 2

设 X1, · · · , Xn
i.i.d.∼ U(θ, 2θ)其中 θ > 0。证明：(X(1), X(n))是充分统计量，但不是完全的。

证明 X1, · · · , Xn的联合密度为

f(x; θ) =
n∏

i=1

1

θ
· I(θ,2θ)(xi) = θ−nI(θ < x(1) ≤ x(n) < 2θ) := g(T (x), θ)h(x)

其中 g(T (x), θ) = θ−nI(θ < x(1) ≤ x(n) < 2θ)而 h(x) = 1。由因子分解定理，(X(1), X(n))是充分

统计量。

下面，令 Yi = Xi/θ则易知 Yi ∼ U(1, 2)与 θ无关。于是 Z = X(n)/X(1)的分布也与 θ无关，

即 Z 的分布确定。所以，存在 a < b使得 P (Z < a) = P (Z > b) > 0，构造函数 ϕ(·)为

ϕ(x(1), x(n)) =

⎧
⎪⎪⎨

⎪⎪⎩

1, x(n)/x(1) < a

−1, x(n)/x(1) > a

0, 其他

于是 Eθ(ϕ(T (X))) = 0，但 ϕ(·) ̸≡ 0，即 T (X) = (X(1), X(n))不是完全统计量。

Exercise 3

设 X1, · · · , Xn
i.i.d.∼ N(µ,σ2)其中 µ ∈ R, σ2 ∈ R+。证明：X̄ 和 (X(n) −X(1))相互独立。

2



证明 首先，写出 X1, · · · , Xn的联合密度为

f(x;θ) = (2πσ2)−n/2 exp

{
− 1

2σ2

n∑

i=1

(xi − µ)2
}

易知可以写成因子分解形式，故 X̄ 为充分统计量。然后写出其自然形式

f(x;θ) = (2πσ2)−n/2enµ
2/2σ2

exp

{
− 1

2σ2

n∑

i=1

x2
i +

µ

σ2

n∑

i=1

xi

}

注意到自然参数空间为

Θ∗ =

{
θ =

(
− 1

2σ2
,
µ

σ2

)
: − 1

2σ2
∈ (−∞, 0),

µ

σ2
∈ (−∞,+∞)

}

指数族中，由 Θ∗有内点，故 (
∑

Xi,
∑

X2
i )为完全统计量。

记 Yi = (Xi − µ)/σ，于是 Yi ∼ N(0, 1) 与 θ 无关。注意到 X(n) − X(1) = Y(n) − Y(1) 的分

布，同理与 θ = (µ,σ2) 无关。则由 Basu 定理，X(n) − X(1) 和 (
∑

Xi,
∑

X2
i ) 相互独立，即有

X̄ ⊥⊥ (X(n) −X(1))，命题证毕。

Exercise 4

设总体 X 服从均匀分布 U(0, 2θ)，令 X1, · · · , Xn为从总体 X 中抽取的简单随机样本。

a 证明 θ̂1 = X̄ 和 θ̂2 =
(n+1)X(n)

2n 为 θ的无偏估计。

b 证明 θ̂1为 θ的强相合估计，θ∗2 =
X(n)

2 为 θ的弱相合估计。

c 求 θ̂1和 θ̂2的方差，比较它们的有效性。

证明 (a) 由 X ∼ U(0, 2θ)故其概率密度为

f(x; θ) =
1

2θ
· I(0,2θ)(x)

于是可求 θ̂1的期望

E(θ̂1) = E(X̄) = E(X1) =

ˆ 2θ

0

x

2θ
dx =

(2θ)2

4θ
− 0 = θ

故 θ̂1 = X̄ 为 θ的无偏估计。同理求 θ̂2 =
(n+1)X(n)

2n 的期望。注意到 X(n)的密度函数为

fX(n)
(x) = n

( x

2θ

)n−1 1

2θ

所以有

E(θ̂2) = E
(
(n+ 1)X(n)

2n

)
=

n+ 1

2n

ˆ 2θ

0

n
( x

2θ

)n−1 1

2θ
· x dx

=
n+ 1

2

ˆ 2θ

0

( x

2θ

)n

dx =
n+ 1

2

[
2θ

n+ 1

(
2θ

2θ

)n+1

− 0

]

=
n+ 1

2

2θ

n+ 1
= θ

于是 θ̂2 =
(n+1)X(n)

2n 为 θ的无偏估计，命题证毕。
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证明 (b) 由 X ∼ U(0, 2θ), θ > 0知我们只考虑 X > 0的分布，即有 E(|X|) = E(X) = θ < ∞。
故由强大数定律可知

θ̂1 = X̄
a.s.−→ E(X1) = θ

即 θ̂1为 θ的强相合估计。下面证：θ∗2 =
X(n)

2 为 θ的弱相合估计。

注意到 X(n)的分布函数为

FX(n)
(x) =

ˆ min{2θ,x}

0

n

(
t

2θ

)n−1 1

2θ
dt =

(
t

2θ

)n∣∣∣∣
min{2θ,x}

0

考虑不平凡的情况 FX(n)
(x) =

(
t
2θ

)n∣∣x
0
· I(x < 2θ) =

(
x
2θ

)n · I(x < 2θ)。所以对 ∀ ϵ > 0和不平凡

的 X(n) < 2θ有

P (|X(n) − 2θ| > ϵ) = P (X(n) − 2θ < −ϵ) = P (X(n) < 2θ − ϵ) = FX(n)
(2θ − ϵ)

=

(
2θ − ϵ

2θ

)n

= (1− ϵ/2θ)n → 0 as n → ∞

当 ϵ < 2θ成立（平凡地，当 ϵ > 2θ，显然有 P (|X(n) − 2θ| > ϵ) = 0同样成立）。于是有对 ∀ ϵ > 0

有

lim
n→∞

P (|X(n) − 2θ| ≤ ϵ) = 1 ⇒ lim
n→∞

P (|X(n)/2− θ| ≤ ϵ/2) = 1

即 θ∗2 = X(n)/2
P−→ θ，为 θ的弱相合估计。

解答 (c) 因为 X ∼ U(0, 2θ)故有方差为 D(X) = (2θ−0)2

12 = θ2

3。所以样本均值的方差为

D(θ̂1) = D(X̄) =
1

n2

n∑

i=1

D(Xi) =
n

n2
· θ

2

3
=

θ2

3n

由问题 a计算的结果 E(X(n)) = 2nθ/(n+ 1)，下面计算 E(X2
(n))有

E(X2
(n)) =

ˆ 2θ

0

n
( x

2θ

)n−1 1

2θ
· x2 dx =

ˆ 2θ

0

n
( x

2θ

)n

· x dx

= 4nθ2
ˆ 2θ

0

( x

2θ

)n+1

d
x

2θ
= 4nθ2 · 1

n+ 2
· 1 =

4nθ2

n+ 2

于是有方差为

D(X(n)) = E(X2
(n))− [E(X(n))]

2 =
4nθ2

n+ 2
−

(
2nθ

n+ 1

)2

=
4nθ2

(n+ 1)2(n+ 2)

所以 θ̂2的方差为

D(θ̂2) = D
(
(n+ 1)X(n)

2n

)
=

(n+ 1)2

4n2

4nθ2

(n+ 1)2(n+ 2)
=

θ2

n(n+ 2)

因为二者都是无偏的，故比较二者方差，在任意 θ下有

D(θ̂1) =
θ2

3n
∼ O(1/n) D(θ̂2) =

θ2

n(n+ 2)
∼ O(1/n2)

当 n > 1时 D(θ̂2) < D(θ̂1)，故 θ̂2比 θ̂1更有效。

4



HW6第六次作业解答

更新：2026年 1月 9日

Exercise 1

设 X1, · · · , Xn为抽自对数级数分布的简单随机样本，

P (X = k) = − 1

log(1− p)
· p

k

k
, k = 1, 2, · · ·

其中参数 p ∈ (0, 1)，求 p的矩估计。

解答 记 k阶矩为 αk = E{Xk}，样本 k阶矩为 ank =
∑n

i=1 X
k
i /n，于是有

α1 =
∞∑

k=1

k · P (X = k) = − 1

log(1− p)

∞∑

k=1

k · p
k

k
= − 1

log(1− p)

∞∑

k=1

pk = − 1

log(1− p)
· p

1− p

于是使用一阶样本矩估计有

an1 = −
1

log(1− p̂)
· p̂

1− p̂
(1)

同理求二阶矩

α2 =
∞∑

k=1

k2 · P (X = k) = − 1

log(1− p)

∞∑

k=1

k2 · p
k

k
= − 1

log(1− p)

∞∑

k=1

k · pk

记Mk = − log(1− p)αk，于是注意到

M2 − p ·M2 =
∞∑

k=1

k · pk −
∞∑

k=1

k · pk+1 =
∞∑

k=1

k · pk −
∞∑

k=2

(k − 1) · pk = p+
∞∑

k=2

pk = p+
p2

1− p

于是有

α2 = −
1

log(1− p)
·M2 = −

1

log(1− p)
· p

(1− p)2

所以使用二阶样本矩估计有

an2 = −
1

log(1− p̂)
· p̂

(1− p̂)2
(2)

联合使用 an1, an2进行估计，即求解方程式 1和式 2
⎧
⎪⎪⎨

⎪⎪⎩

an1 = −
1

log(1− p̂)
· p̂

1− p̂

an2 = −
1

log(1− p̂)
· p̂

(1− p̂)2



于是有 an1/an2 = 1− p̂，即 p的矩估计为

p̂ = 1− an1
an2

= 1−
∑n

i=1 Xi∑n
i=1 X

2
i

Exercise 2

设 X1, · · · , Xn是来自总体 N(0,σ2)的简单随机样本，求 σ的矩估计。

1. 利用 E{|X1|} = σ
√
2/π

2. 利用 σ =
√

D{X1}

解答 由 E{|X1|} = σ
√
2/π故使用有关 |Xi|的矩进行估计

σ̂2 =

√
π

2
· 1
n

n∑

i=1

|Xi|

类似地，σ =
√

D{X1}，利用mn2估计 D{X1}得到 σ的估计

σ̂2 =

√√√√ 1

n

n∑

i=1

(Xi − X̄)2

注 记 Yi = |Xi|，于是有 Yi独立同分布，且

E{Y1} =

ˆ
{y=|x|: x∈R}

(2πσ2)−1/2e
y2

2σ2 dy

=

ˆ
{y=x: x>0}

(2πσ2)−1/2e
y2

2σ2 dy +

ˆ
{y=−x: x<0}

(2πσ2)−1/2e
y2

2σ2 dy

= 2

ˆ ∞

0

(2πσ2)−1/2e
y2

2σ2 dy = σ
√

2/π <∞

由强大数定理可知
1

n

n∑

i=1

|Xi| =
1

n

n∑

i=1

Yi
a.s.−→ E{Y1} = σ

√
2/π

所以使用 |Xi|相关矩的矩估计，其相合性得到保证。

Exercise 3

若 X = eξ，而 ξ ∼ N(µ,σ2)，则 X 的分布称为对数正态分布。求 X 的概率密度函数。设

X1, · · · , Xn是从总体 X 中抽出的简单随机样本，求 µ和 σ2的矩估计和MLE。

2



解答 由 ξ ∼ N(µ,σ2)可知 ξ的概率密度函数为

fΞ(ξ;µ,σ
2) = (2πσ2)−1/2 exp

{
−(ξ − µ)2

2σ2

}

而 ξ = logX 故有 X 的概率密度函数为

fX(x;µ,σ
2) = fΞ(ξ(x);µ,σ

2) · |dξ/dx| = (2πσ2)−1/2 exp

{
−(log x− µ)2

2σ2

}
x−1

(1)求解矩估计。根据密度函数，可求 k阶矩（注意 X = eξ > 0），例如

E{X} =

ˆ ∞

0

(2πσ2)−1/2 exp

{
−(log x− µ)2

2σ2

}
dx

log x=t
====

ˆ +∞

−∞
(2πσ2)−1/2 exp

{
−(t− µ)2

2σ2

}
et dt

=

ˆ +∞

−∞
(2πσ2)−1/2 exp

{
2σ2t− (t2 − 2µt+ µ2)

2σ2

}
dt

注意到

2σ2t− (t2 − 2µt+ µ2) = −[t− (µ+ σ2)]2 + (µ+ σ2)2 − µ2 = −(t− µ− σ2)2 + 2µσ2 + σ4

代回 E{X}有

E{X} = eµ+σ2/2

ˆ +∞

−∞
(2πσ2)−1/2 exp

{
−(t− µ− σ2)2

2σ2

}
dt

积分中函数可视为正态分布密度函数在 R的积分，即为 1，所以 E{X} = eµ+σ2/2。类似地，二

阶矩为

E{X2} =

ˆ ∞

0

(2πσ2)−1/2 exp

{
−(log x− µ)2

2σ2

}
x dx

log x=t
====

ˆ +∞

−∞
(2πσ2)−1/2 exp

{
−(t− µ)2

2σ2

}
e2t dt

= e2µ+2σ2

ˆ +∞

−∞
(2πσ2)−1/2 exp

{
−(t− µ− 2σ2)2

2σ2

}
dt

故 E{X2} = e2µ+2σ2
。于是解下列方程得到矩和参数的关系

⎧
⎨

⎩
µ+ σ2/2 = logE{X}← log an1

2µ+ 2σ2 = logE{X2}← log an2

于是得到矩估计为 ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

µ̂ = − log
√
an2 = − log

√
1

n

∑n

i=1
X2

i

σ̂2 = log
an2
a2n1

= log
n
∑n

i=1 X
2
i

(
∑n

i=1 Xi)2

特别地，这里的矩估计不唯一。例如，如果使用mnk 估计则得到的表达式不同。

e2µ+2σ2 − e2µ+σ2
= E{X2}− [E{X}]2 = µ2 ← mn2

3



于是有 [E{X}]2(eσ − 1) = e2µ+σ2
(eσ − 1) = µ2，于是有 eσ − 1 = µ2/α2

1，那么另一种矩估计为
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

µ̂ = logα1 −
1

2
σ̂2 = log X̄ − log

(√

1 +
n
∑n

i=1(Xi − X̄)2

(
∑n

i=1 Xi)2

)

σ̂2 = log

(
1 +

mn2

a2n1

)
= log

(
1 +

n
∑n

i=1(Xi − X̄)2

(
∑n

i=1 Xi)2

)

(2)求解极大似然估计。已知概率密度，故似然函数为

L(µ,σ2;x) = (2πσ2)−n/2 exp

{
n∑

i=1

−(log xi − µ)2

2σ2

}
n∏

i=1

x−1
i

那么对数似然函数为

l(µ,σ2;x) = −n

2
log(2πσ2)−

n∑

i=1

(log xi − µ)2

2σ2
−

n∑

i=1

log xi

分别求偏导有
∂l(µ,σ2)

∂µ
=

n∑

i=1

2(log xi − µ)

2σ2
= 0 ⇔

n∑

i=1

log xi = nµ

所以有 µ的MLE为 µ̂MLE = 1
n

∑n
i=1 logXi。代回对数似然，并对 σ2求偏导有

∂l(µ,σ2)

∂σ2
= −n

2

2π

2πσ2
+

n∑

i=1

2(log xi − µ̂MLE)2

4σ4
= 0

于是有 σ2的MLE为 σ̂2
MLE = 1

n

∑n
i=1(logXi − µ̂MLE)2。

Exercise 4

设 X1, · · · , Xn是来自双参数指数分布

f(x;µ,σ) =
1

σ
exp

{
−x− µ

σ

}
· I(x ≥ µ)

的简单随机样本，其中 µ ∈ R, σ ∈ R+。记 θ = (µ,σ)，求 µ,σ和 Pθ(X1 ≥ t)（其中 t > µ已知）

的矩估计和MLE。

解答 记 t = (x− µ)/σ于是我们得到下列积分结果

E{X1} =

ˆ ∞

µ

x

σ
exp

{
−x− µ

σ

}
dx =

ˆ ∞

0

(µ+ σt)e−t dt = µ+ σ

E{X2
1} =

ˆ ∞

µ

x2

σ
exp

{
−x− µ

σ

}
dx =

ˆ ∞

0

(µ+ σt)2e−t dt = µ2 + 2σµ+ 2σ2

(1) 求解矩估计：注意到 E{X2
1} = µ2 + 2σµ + 2σ2 = (µ + σ)2 + σ2 = [E{X1}]2 + σ2，即

σ2 = E{X2
1} − [E{X1}]2 = µ2，于是可得 σ 的矩估计 σ̂MM =

√
mn2。代回可得 µ 的矩估计

µ̂MM = an1 −
√
mn2。下面计算 Pθ(X1 ≥ t)

Pθ(X1 ≥ t) =

ˆ ∞

t

1

σ
exp

{
−x− µ

σ

}
dx = − exp

{
−x− µ

σ

}∣∣∣∣
∞

t

= exp

{
−t− µ

σ

}
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结合矩估计的性质，可以得到以下矩估计
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

µ̂MM = an1 −
√
mn2 = X̄ −

√
1

n

∑n

i=1
(Xi − X̄)2

σ̂MM =
√
mn2 =

√
1

n

∑n

i=1
(Xi − X̄)2

P̂MM(X1 ≥ t) = exp

{
−t− µ̂MM

σ̂MM

}

(2)求解似极大然估计：已知概率密度函数，可求似然函数

L(µ,σ;x) =
n∏

i=1

1

σ
exp

{
−xi − µ

σ

}
· I(xi ≥ µ) =

1

σn
exp

{
n∑

i=1

−xi − µ

σ

}
· I(x(1) ≥ µ)

于是对数似然为

l(µ,σ;x) =

(
−n log σ −

n∑

i=1

xi − µ

σ

)
· I(x(1) ≥ µ)

=

(
−n log σ − σ−1

n∑

i=1

xi + nµσ−1

)
· I(x(1) ≥ µ)

求解下列方程 ⎧
⎪⎪⎨

⎪⎪⎩

∂l(µ,σ)

∂µ
= nσ−1 > 0

∂l(µ,σ)

∂σ
= −nσ−1 + σ−2

∑n

i=1
xi − nµσ−2 = 0

由 ∂l/∂µ > 0可知，极大化似然函数，需要 µ尽可能大，但为了满足 X(1) ≥ µ，故有 µ的MLE
为 µ̂MLE = X(1)。同时，求解第二个方程有 σ的MLE为 σ̂MLE = X̄ − µ̂MLE = X̄ −X(1)。综上有

极大似然估计为 ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

µ̂MLE = X(1)

σ̂MLE = X̄ −X(1)

P̂MEL(X1 ≥ t) = exp

{
−t− µ̂MLE

σ̂MLE

}
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HW7第七次作业解答

更新：2026年 1月 9日

Exercise 1

设 (X1, · · · , Xn)是来自均匀分布 U [θ, 2θ]的简单随机样本，其中 θ ∈ (0,+∞)，求 θ的MLE。
判断它是否为 θ的无偏估计。如果不是，试对它略作修改，得到 θ的一个无偏估计。

解答 由于 Xi ∼ U [θ, 2θ]，其概率密度函数为

f(x; θ) =
1

θ
· I(θ ≤ x ≤ 2θ)

因此，样本的对数似然函数为

l(θ) = logL(θ) = log

(
n∏

i=1

f(xi; θ)

)
= −n log θ · I(θ ≤ x(1) ≤ x(n) ≤ 2θ)

容易看出，当 θ ≤ x(1) ≤ x(n) ≤ 2θ时，l(θ)随 θ增大而减小，因此，l(θ)在区间 x(n)/2上取得最

大值。故 θ的MLE为 θ̂MLE =
X(n)

2 。

接下来计算 θ̂MLE的期望，由次序统计量的性质可知，最大值 X(n)的概率密度函数为

fX(n)
(x) =

n

θn
(x− θ)n−1 · I(θ ≤ x ≤ 2θ)

因此，

E[θ̂MLE] = E
[
X(n)

2

]
=

ˆ 2θ

θ

x

2
· fX(n)

(x) dx =

ˆ 2θ

θ

x

2
· n

θn
(x− θ)n−1 dx

t=x−θ
====

ˆ θ

0

t+ θ

2
· n

θn
tn−1 dt =

n

2θn

ˆ θ

0

tn dt+
nθ

2θn

ˆ θ

0

tn−1 dt

=
n

2(n+ 1)
θ +

1

2
θ =

2n+ 1

2(n+ 1)
θ

故 θ̂MLE不是 θ的无偏估计。但可以通过修正得到 θ的一个无偏估计：

θ̂U =
2(n+ 1)

2n+ 1
· θ̂MLE =

n+ 1

2n+ 1
X(n)



Exercise 2

设 X1, · · · , Xn为抽自下列指数分布的简单随机样本，

f(x;µ) = e−(x−µ) · I(x > µ), µ ∈ R

(1) 试求 µ的极大似然估计 µ̂MLE 是 µ的无偏估计吗？如果不是，试对它作修改，以得到 µ的

无偏估计 µ̂U。

(2) 试求 µ的矩估计 µ̂MM，并证明它是 µ的无偏估计。

(3) 试问 µ̂U和 µ̂MM哪一个更有效？

解答 (1) 样本的对数似然函数为

l(µ) = logL(µ) = log

(
n∏

i=1

f(xi;µ)

)
= −

n∑

i=1

(xi − µ) · I(µ < x(1))

容易看出，当 µ < x(1)时，l(µ)随 µ增大而增大，因此，µ的MLE为 µ̂MLE = X(1)。

记 Yi = Xi−µ，则 Yi的概率密度函数为 f(y) = e−y ·I(y > 0) ∼ Exp(1)。因此，Y(1) = X(1)−µ

的概率密度函数为

fY(1)
(y) = ne−ny · I(y > 0) ∼ Exp(n)

故 E[Y(1)] = 1/n，所以

E[µ̂MLE] = E[X(1)] = E[Y(1)] + µ = 1/n+ µ

故 µ̂MLE不是 µ的无偏估计。但可以通过修正得到 µ的一个无偏估计 µ̂U = X(1) − 1/n。

解答 (2) 由 Yi ∼ Exp(1)，所以有 E[Yi] = 1 = E[Xi]− µ，因此，µ的矩估计为 µ̂MM = X̄ − 1而

E[µ̂MM] = E[X̄]− 1 =
1

n

n∑

i=1

E[Xi]− 1 =
1

n

n∑

i=1

(µ+ 1)− 1 = µ

显然，µ̂MM是 µ的无偏估计。

解答 (3) 由于 µ̂U和 µ̂MM都是 µ的无偏估计，因此，只需比较它们的方差即可。由 Y(1) ∼ Exp(n)

可知 Var(Y(1)) = 1/n2，因此，

Var(µ̂U) = Var(X(1) − 1/n) = Var(Y(1)) = 1/n2

又因为 Xi相互独立同分布，

Var(µ̂MM) = Var(X̄ − 1) = Var(X̄) =
1

n2

n∑

i=1

Var(Xi) =
1

n
Var(Xi)

而 Xi = Yi + µ，且 Yi ∼ Exp(1)，所以 Var(Xi) = Var(Yi) = 1。因此，Var(µ̂MM) = 1/n。故有

Var(µ̂U) =
1

n2
<

1

n
= Var(µ̂MM)

故 µ̂U比 µ̂MM更有效。

2



Exercise 3

设 X1, · · · , Xn
i.i.d.∼ Ge(θ)分布族

P (X = i) = θ(1− θ)i−1, i = 1, 2, · · · , θ ∈ (0, 1)

(1) 试证明 T =
∑n

i=1 Xi是 θ的充分完全统计量，且服从 Pascal（负二项）分布

Pθ(T = t) =

(
t− 1

n− 1

)
θn(1− θ)t−n, t = n, n+ 1, · · ·

(2) 计算 Eθ(T ),并由此求 θ−1的 UMVUE。
(3) 试证明 ψ(X1) = I(X1 = 1) 是 θ 的无偏估计，计算 Eθ(ψ(X1)|T = t)，并由此求得 θ 的

UMVUE。

证明 (1) 由 X1, · · · , Xn
i.i.d.∼ Ge(θ)可知联合概率为

P (X1 = x1, · · · , Xn = xn) =
n∏

i=1

θ(1− θ)xi−1 = θn(1− θ)
∑n

i=1 xi−n

所以给定 T =
∑n

i=1 Xi的概率为

P (X1 = x1, · · · , Xn = xn|T = t) =
P (X1 = x1, · · · , Xn = xn)

P (T = t)
=
θn(1− θ)t−n

P (T = t)

而 T =
∑n

i=1 Xi其中 Xi ≥ 1，由隔板法可知共
(
t−1
n−1

)
个解满足条件。所以

P (T = t) =
∑

∑n
i=1 xi=t

P (X1 = x1, · · · , Xn = xn) =

(
t− 1

n− 1

)
θn(1− θ)t−n

所以 T 服从负二项分布。同时

P (X1 = x1, · · · , Xn = xn|T = t) =
θn(1− θ)t−n

P (T = t)
=

θn(1− θ)t−n

(
t−1
n−1

)
θn(1− θ)t−n

=

(
t− 1

n− 1

)−1

与 θ无关，由充分统计量定义可知 T =
∑n

i=1 Xi是 θ的充分统计量。

解答 (2) 由已知 T 的分布列，故有

Eθ(T ) =
∞∑

t=n

t

(
t− 1

n− 1

)
θn(1− θ)t−n

由分布列的性质
∞∑

t=n

P (T = t) = 1 ⇒
∞∑

t=n

(
t− 1

n− 1

)
θn(1− θ)t−n = 1

记 S(θ) =
∑∞

t=n

(
t−1
n−1

)
(1− θ)t−n = θ−n，注意到

S ′(θ) = −
∞∑

t=n

(t− n)

(
t− 1

n− 1

)
(1− θ)t−n−1 = − n

θn+1

3



于是有

∞∑

t=n

t

(
t− 1

n− 1

)
(1− θ)t−n = −S ′(θ) · (1− θ) + nS(θ) =

n(1− θ)

θn+1
+

n

θn

所以

Eθ(T ) = θn
(
n(1− θ)

θn+1
+

n

θn

)
= n(1− θ)θ−1 + n = nθ−1

同时，根据 Lehmann-Scheffe定理，T 是充分完全统计量，而 Eθ(T/n) = θ−1是无偏的，所以 θ−1

的 UMVUE为 T/n = 1
n

∑n
i=1 Xi。

证明 (3) 容易得
Eθ(ψ(X1)) = Eθ(I(X1 = 1)) = P (X1 = 1) = θ

所以 ψ(X1)是 θ的无偏估计。而

Eθ(ψ(X1)|T = t) = 1 · P (X1 = 1|T = t) =
P (X1 = 1, X2 + · · ·+Xn = t− 1)

P (T = t)

=
P (X1 = 1)P (T −X1 = t− 1)

P (T = t)

而 T 服从负二项分布，所以

Eθ(ψ(X1)|T = t) =
θ
(
t−2
n−2

)
θn−1(1− θ)t−n

(
t−1
n−1

)
θn(1− θ)t−n

=
n− 1

t− 1
, t = n, n+ 1, · · ·

下面求 Eθ(ψ(X1)|T = t)的期望

Eθ[Eθ(ψ(X1)|T = t)] =
∞∑

t=n

n− 1

t− 1

(
t− 1

n− 1

)
θn(1− θ)t−n =

∞∑

t=n

(
t− 2

n− 2

)
θn(1− θ)t−n

由广义二项式展开知

∞∑

t=n

(
t− 2

n− 2

)
(1− θ)t−n =

∞∑

t=0

(
t+ n− 2

n− 2

)
(1− θ)t = [1− (1− θ)]−(n−1)

代回则得

Eθ[Eθ(ψ(X1)|T = t)] = θn[1− (1− θ)]−(n−1) = θ

所以 g(T ) = Eθ(ψ(X1)|T = t)是 θ的无偏估计，而 T 为充分完全统计量，结合 Lehmann-Scheffe
定理，θ的 UMVMU为 g(T ) = Eθ(ψ(X1)|T = t)。

Exercise 4

设 X1, · · · , Xn
i.i.d.∼ b(1, p)两点分布，0 < p < 1是未知参数，试求：

(1) ps的 UMVUE。
(2) ps + (1− p)n−s的 UMVUE，其中 s ∈ (0, n)为整数。

4



解答 (1) 设 T =
∑n

i=1 Xi，于是 T ∼ B(n, p)，那么

P (X1 = x1, · · · , Xn = xn|T = t) =
P (X1 = x1, · · · , Xn = t−

∑n−1
i=1 xi)

P (T = t)

=

(∏n−1
i=1 pxi(1− p)1−xi

)
· pt−

∑n−1
i=1 xi(1− p)1−t+

∑n−1
i=1 xi

(
n
t

)
pt(1− p)n−t

=
pt(1− p)n−t

(
n
t

)
pt(1− p)n−t

=

(
n

t

)−1

与 p无关，故 T 为充分统计量。对任意函数 ϕ(T )的期望为

Ep(ϕ(T )) =
n∑

t=0

ϕ(t)

(
n

t

)
pt(1− p)n−t = (1− p)n

n∑

t=0

ϕ(t)

(
n

t

)(
p

1− p

)t

当 Ep(ϕ(T )) = 0对任意 p成立时，由多项式的性质，系数 ϕ(t)
(
n
t

)
= 0，于是 ϕ(t) = 0 a.s. P，于

是 T 是充分完全统计量。于是，由 Lehmann-Scheffe定理，下面只需寻找 g(T )使得 g(T )是无偏

估计即可。

对任意 n ∈ N+，定义

n(s) =
n!

(n− s)!
= n(n− 1)(n− 2) · · · (n− s+ 1)

当 n < s时 n(s) = 0。下面我们断言：E(T (s)) = n(s)ps。

E(T (s)) =
n∑

t=0

t(s)
(
n

t

)
pt(1− p)n−t =

n∑

t=s

t!

(t− s)!
· n!

t!(n− t)!
pt(1− p)n−t

=
n∑

t=s

n!

(t− s)!(n− t)!
pt(1− p)n−t =

n∑

t=s

(n− s)!

(t− s)!(n− t)!
· n!

(n− s)!
pt(1− p)n−t

= n(s)
n∑

t=s

(
n− s

t− s

)
pt(1− p)n−t = n(s)ps

n∑

t=s

(
n− s

t− s

)
pt−s(1− p)(n−s)−(t−s)

= n(s)ps
n−s∑

t=0

(
n− s

t

)
pt(1− p)(n−s)−t = n(s)ps[p+ (1− p)]n−s = n(s)ps

断言证毕。于是我们得到 ps的 UMVUE为 g(T ) = T (s)

n(s) = T !(n−s)!
n!(T−s)!。

解答 (2) 注意到 n− T ∼ B(n, 1− p)，所以与上面同理 (1− p)n−s的 UMVUE为 (n−T )(n−s)

n(n−s) 。于是

ps + (1− p)n−s的 UMVUE为

T (s)

n(s)
+

(n− T )(n−s)

n(n−s)
=

T !(n− s)!

n!(T − s)!
+

s!(n− T )!

n!(s− T )!

=
T !(n− s)!

n!(T − s)!
· I(T ≥ s) +

s!(n− T )!

n!(s− T )!
· I(T ≤ s)
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HW8第八次作业解答

更新：2026年 1月 9日

Exercise 1

设 X1, · · · , Xm
i.i.d.∼ N(a,σ2) 以及 Y1, · · · , Yn

i.i.d.∼ N(a, 2σ2) 且两样本独立。求 a 和 σ2 的

UMVUE。

解答 由正态分布，可得概率函数

f(x,y; a,σ2) = (2πσ2)−m/2 exp

{
− 1

2σ2

m∑

i=1

(xi − a)2
}
(4πσ2)−n/2 exp

{
− 1

4σ2

n∑

j=1

(yj − a)2
}

= C(a,σ2) exp

{
− 1

2σ2

(
m∑

i=1

x2
i +

1

2

n∑

j=1

y2j

)
+

a

σ2

(
m∑

i=1

xi +
1

2

n∑

j=1

yj

)}

容易证明 T1 =
∑m

i=1 x
2
i +

1
2

∑n
j=1 y

2
j 和 T2 =

∑m
i=1 xi +

1
2

∑n
j=1 yj 是 a,σ2的充分完全统计量（这

是因为有内点）。于是

E(T2) = E
(

m∑

i=1

xi +
1

2

n∑

j=1

yj

)
=
(
m+

n

2

)
a

Var(T2) = Var

(
m∑

i=1

xi +
1

2

n∑

j=1

yj

)
=
(
m+

n

2

)
σ2

而

E(T1) = E
(

m∑

i=1

x2
i +

1

2

n∑

j=1

y2j

)
= E

(
m∑

i=1

(Var(xi) + [E(xi)]
2) +

1

2

n∑

j=1

(Var(yj) + [E(yj)]2)
)

= m(σ2 + a2) +
n

2
(2σ2 + a2) = (m+ n)σ2 +

(
m+

n

2

)
a2

于是我们构造 ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

â =
2T2

2m+ n

σ̂2 =
T1 −

2T 2
2

2m+ n
m+ n− 1



如此有 E(â) = a以及注意到

E
(
T1 −

2T 2
2

2m+ n

)
= (m+ n)σ2 +

(
m+

n

2

)
a2 − E(T 2

2 )

m+ n/2

= (m+ n)σ2 +
(
m+

n

2

)
a2 − 1

m+ n/2
·
[(

m+
n

2

)
σ2 +

(
m+

n

2

)2
a2
]

= (m+ n− 1)σ2

于是有 E(σ̂2) = σ2。由 Lehmann–Scheffe定理知，â, σ̂2为 a,σ2的 UMVUE。

Exercise 2

设 X1, · · · , Xn
i.i.d.∼ N(0,σ2)其中 σ2 > 0为未知参数，试求

1. σ2的充分完全统计量

2. σ和 3σ4的 UMVUE。

解答 (1) 由 X1, · · · , Xn
i.i.d.∼ N(0,σ2)可知概率函数为

f(x; σ2) = (2πσ2)−n/2 exp

{
1

2σ2

n∑

i=1

x2
i

}

自然参数空间在 R有内点，故 T =
∑n

i=1 x
2
i 是充分完全统计量。

解答 (2) 设 Yi = Xi/σ ∼ N(0, 1)且相互独立，故 T/σ2 =
∑n

i=1 Y
2
i ∼ χ2

n。所以

E(T/σ2) = n Var(T/σ2) = 2n

于是

E(T 2/σ4) = [E(T/σ2)]2 +Var(T/σ2) = n2 + 2n

于是我们构造

σ̂4 =
T 2

n2 + 2n

有 E(3σ̂4) = 3σ4，由 Lehmann-Scheffe定理知 3σ̂4 = 3T 2

n2+2n 是 3σ4的 UMVUE。

下面求 σ的 UMVUE。由于 Z = T/σ2 ∼ χ2
n，于是 Z 的密度函数为

fZ(z) =
2−n/2

Γ(n/2)
zn/2−1e−z/2 · I(z > 0)

于是
√
Z 的期望为

E(
√
Z) =

ˆ ∞

0

√
z · 2−n/2

Γ(n/2)
zn/2−1e−z/2 dz =

ˆ ∞

0

2−n/2

Γ(n/2)
z

n+1
2 −1e−

z
2 dz

u=z/2
====

2−1/2

Γ(n/2)

ˆ ∞

0

2u
n+1
2 −1e−u dz = 21/2Γ

(
n+ 1

2

)/
Γ
(n
2

)

2



于是构造 ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ̂ =
Γ
(n
2

)

21/2Γ

(
n+ 1

2

)
√
T

3σ̂4 =
3T 2

n2 + 2n

其中 T =
∑n

i=1 X
2
i 就有 σ̂, 3σ̂4为 σ, 3σ4的 UMVUE。

Exercise 3

证明均匀分布族F = {U(0, θ) : 0 < θ < ∞}不是 C-R正则分布族。

证明 设 X1, · · · , Xn
i.i.d.∼ U(0, θ)均匀分布，则概率函数为

f(x; θ) = θ−n · I(0 < x(1) ≤ x(n) < θ)

对参数 θ ∈ Θ，支撑集为

Suppθ(f) = {x : f(x; θ) > 0} = {x : x ∈ (0, θ)n = (0, θ)× (0, θ)× · · ·× (0, θ)}

即支撑集 Suppθ(f)随参数 θ变化，不是共同的支撑集，与 C-R正则要求相悖。

Exercise 4

设 X1, · · · , Xn为自下列总体中抽取的简单样本

f(x; θ) = θ−1e−θ−1x · I(x > 0)

其中 θ > 0为未知参数,求 θ的无偏估计的方差下限和 θ的 UMVUE，并比较 θ的 UMVUE方差
与 C-R下界。

解答 X1, · · · , Xn的似然函数为

L(θ;x) =
n∏

i=1

f(x; θ) =
n∏

i=1

θ−1e−θ−1xi · I(xi > 0) = θ−n exp

{
−θ−1

n∑

i=1

xi

}
· I(x(1) > 0)

于是对数似然为

l(θ) = −n log θ − θ−1
n∑

i=1

xi, x(1) > 0

求导

dl(θ)

dθ
= −nθ−1 + θ−2

n∑

i=1

xi

d2l(θ)

dθ2
= nθ−2 − 2θ−3

n∑

i=1

xi

3



注意到 Xi相互独立，且 Xi服从 Exp(θ−1)的期望为 θ。从而 Fisher信息量为

I1(θ) = −E
(
d2l(θ)

dθ2

)
= −E

(
nθ−2 − 2θ−3

n∑

i=1

xi

)
= −nθ−2 + 2nθ−2 = nθ−2

于是根据 Cramer-Rao不等式有
Var(θ̂) ≥ 1

I1(θ)
=

θ2

n

又注意到，设 X̄ = 1
n

∑n
i=1 Xi有

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E(X̄) =
1

n

n∑

i=1

E(Xi) =
1

n
nθ = θ

Var(X̄) =
1

n2

n∑

i=1

Var(Xi) =
1

n2
nθ2 =

θ2

n

故 X̄ 是 θ 的无偏估计，且其方差达到 Cramer-Rao不等式估计的无偏估计的方差下界，所以 X̄

是 θ的 UMVUE。

4



HW9第九次作业解答

更新：2026年 1月 9日

Exercise 1

设 X1, · · · , Xn
i.i.d.∼ N(0,σ2)，证明

σ̂ =
Γ(n/2)√

2Γ((n+ 1)/2)

√∑n

i=1
X2

i

是 σ的 UMVUE，并求其效率。

证明 记 σ̂ = ĝ(T )而 T = T (X) =
∑n

i=1 X
2
i。容易知X 的概率函数满足指数族，故 C-R条件成

立，下面求 C-R下界。
g′(θ) =

1

2
√
θ

⇒ g′(σ2) =
1

2
√
σ2

=
1

2σ

而

I(σ2) = E
(
∂ log fn(x; σ2)

∂σ2

)2

= E
[

∂

∂σ2

(
−n

2
log(2πσ2)−

n∑

i=1

x2
i

2σ2

)]2

= E
(
− n

2σ2
+

T

2σ4

)2

= E
(

n2

4σ4
+

T 2

4σ8
− nT

2σ6

)

=
n2

4σ4
+

E(T 2)

4σ8
− nE(T )

2σ6

注意到 T/σ2 ∼ χ2
n，于是有 E(T ) = nσ2, Var(T ) = E(T 2)− [E(T )]2 = 2nσ4。于是 Fisher信息量

为

I(σ2) =
n2

4σ4
+

2nσ4 + (nσ2)2

4σ8
− n2σ2

2σ6
=

n2 + 2n+ n2 − 2n2

4σ4
=

n

2σ4

于是根据 C-R不等式得到 C-R下界为

Varσ2 [ĝ(T )] ≥ [g′(σ2)]2

nI(σ2)
=

1/(4σ2)

n/(2σ4)
=

σ2

2n

下面分析 σ̂ = ĝ(T )的无偏性和有效性。注意到 T/σ2 ∼ χ2
n，故有

E(
√
T/σ) =

ˆ ∞

0

t
1
2 · 1

2n/2Γ(n/2)
t
n
2−1e−

t
2 dt =

1

Γ(n/2)

ˆ ∞

0

t
n−1
2

2n/2
e−

t
2 dt

=

√
2

Γ(n/2)

ˆ ∞

0

(t/2)
n+1
2 −1e−

t
2 dt/2 =

√
2Γ((n+ 1)/2)

Γ(n/2)



于是有

E(σ̂) = Γ(n/2)√
2Γ((n+ 1)/2)

· E(
√
T ) =

Γ(n/2)√
2Γ((n+ 1)/2)

·
√
2Γ((n+ 1)/2)

Γ(n/2)
σ = σ

所以 ĝ(T ) = σ̂是 σ的无偏估计，又容易得到 T 为充分完全统计量，故 ĝ(T )是 g(σ2) =
√
σ2 的

UMVUE。其方差为

Var(σ̂) =

(
Γ(n/2)√

2Γ((n+ 1)/2)

)2

Var(
√
T ) =

(
Γ(n/2)√

2Γ((n+ 1)/2)

)2

{E(T )− [E(
√
T )]2}

=

(
Γ(n/2)√

2Γ((n+ 1)/2)

)2
⎡

⎣nσ2 −
(√

2Γ((n+ 1)/2)

Γ(n/2)
σ

)2
⎤

⎦

=

[
n

(
Γ(n/2)√

2Γ((n+ 1)/2)

)2

− 1

]
σ2

于是，结合之前得到的 C-R下界，我们有效率为

eσ̂(σ) =

[
n2

(
Γ(n/2)

Γ((n+ 1)/2)

)2

− 2n

]−1

注 此处虽然X 分布族为指数族，且 ĝ(T )是 UMVUE，但 ĝ(T ) = C
√
T 形式不是关于充分完全

统计量 T 的线性形式，故不满足 C-R不等式取等条件，效率 eσ̂(σ) < 1。

Exercise 2

设X1, · · · , Xm
i.i.d.∼ N(a,σ2

1)和 Y1, · · · , Yn
i.i.d.∼ N(ca,σ2

2)，其中 c ̸= 0,σ2
1,σ

2
2 已知，a未知，且

X1, · · · , Xm与 Y1, · · · , Yn独立。

1. 试求 a的 UMVUE。
2. 基于此 UMVUE构造 a的一个置信系数为 1− α的置信区间。

解答 (1) X,Y 的概率函数为

fn(X,Y ; a) = (2πσ2
1)

−m/2(2πσ2
2)

−n/2 exp

{
− 1

2σ2
1

m∑

i=1

(Xi − a)2 − 1

2σ2
2

n∑

j=1

(Yj − ca)2
}

:= C exp

{
−ma2

2σ2
1

− nc2a2

2σ2
2

+
a

σ2
1

m∑

i=1

Xi +
ca

σ2
2

n∑

j=1

Yj −
1

2σ2
1

m∑

i=1

X2
i −

1

2σ2
2

n∑

j=1

Y 2
j

}

= C(a) exp

{
a ·
(
mX̄

σ2
1

+
cnȲ

σ2
2

)}
h(X,Y )

其中 ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C(a) = (2πσ2
1)

−m/2(2πσ2
2)

−n/2 exp

{
−ma2

2σ2
1

− nc2a2

2σ2
2

}

h(X,Y ) = exp

{
− 1

2σ2
1

m∑

i=1

X2
i −

1

2σ2
2

n∑

j=1

Y 2
j

}

2



故X,Y 样本分布族为指数族，从而容易得到

T (X,Y ) =
mX̄

σ2
1

+
cnȲ

σ2
2

为 a的充分完全统计量（指数族形式⇒充分，自然参数空间有内点⇒完全）。注意到 c ̸= 0,σ2
1,σ

2
2

已知，且 E(X̄) = a,E(Ȳ ) = ca，有

E[T (X,Y )] =
mE(X̄)

σ2
1

+
cnE(Ȳ )

σ2
2

=

(
m

σ2
1

+
c2n

σ2
2

)
a

于是有 a的无偏估计为

ĝ(T ) =
T

m

σ2
1

+
c2n

σ2
2

=

mX̄

σ2
1

+
cnȲ

σ2
2

m

σ2
1

+
c2n

σ2
2

由 T 是充分完全统计量，以及 Lehmann-Scheffe定理可知，ĝ(T )是 a的 UMVUE。

解答 (2) 注意到 Xi
i.i.d.∼ N(a,σ2

1), Yj
i.i.d.∼ N(ca,σ2

2)且相互独立，其中 c ̸= 0,σ2
1,σ

2
2 已知，故有

X̄ ∼ N

(
a,

σ2
1

m

)
Ȳ ∼ N

(
ca,

σ2
2

n

)

从而 ĝ(T )也服从正态分布，其中

Var[ĝ(T )] = Var

[(
mX̄

σ2
1

+
cnȲ

σ2
2

)/(
m

σ2
1

+
c2n

σ2
2

)]

=

(
m

σ2
1

+
c2n

σ2
2

)−2
[(

m

σ2
1

)2

Var(X̄) +

(
cn

σ2
2

)2

Var(Ȳ )

]

=

(
m

σ2
1

+
c2n

σ2
2

)−2(m2

σ4
1

· σ
2
1

m
+

c2n2

σ4
2

· σ
2
2

n

)

=

(
m

σ2
1

+
c2n

σ2
2

)−2(m

σ2
1

+
c2n

σ2
2

)
=

(
m

σ2
1

+
c2n

σ2
2

)−1

结合 ĝ(T )服从正态分布，于是 a的 1− α置信区间为

CIa =

[
ĝ(T )− z1−α/2

(
m

σ2
1

+
c2n

σ2
2

)−1/2

, ĝ(T ) + z1−α/2

(
m

σ2
1

+
c2n

σ2
2

)−1/2
]

其中 z1−α/2为标准正态分布的上 1− α/2分位数点。

Exercise 3

设X1, · · · , Xn是来自均匀分布 U(θ− 1/2, θ+1/2)的简单随机样本，求 θ的置信系数 1− α

的置信区间。

解答 设 Yi = Xi − (θ − 1/2)，于是 Yi
i.i.d.∼ U(0, 1)。从而有 Y(n)的概率函数为

fY(n)
(y) = nyn−1 · I(0 < y < 1)

3



于是有

P(a < Y(n) < b) =

ˆ b

a

nyn−1 = bn − an = 1− α

当 0 < a < b < 1时成立。下面优化区间长度

min
a,b

|b− a| s.t. bn − an = 1− α

不难得到 a∗ = n
√
α, b∗ = 1，于是有

P( n
√
α < Y(n) < 1) = P( n

√
α < X(n) − (θ − 1/2) < 1) = 1− α

故 θ的 1− α置信区间为

CIθ = [X(n) − 1/2, X(n) − n
√
α + 1/2]

其中 X(n)为X 的第 n个次序统计量。

Exercise 4

设X ∼ B(m, p1), Y ∼ B(n, p2)，且m,n充分大，p1, p2是未知参数，X,Y 独立。基于X,Y，

求 p2 − p1的置信系数近似为 1− α的置信区间。

解答 设 Ui
i.i.d.∼ B(1, p1), i = 1, · · · ,m和 Vj

i.i.d.∼ B(1, p2), j = 1, · · · , n，且 Ui 和 Vj 相互独立。因

为m,n充分大，故由中心极限定理

Ū − E(Ū)√
Var(Ū)

L−→ N(0, 1)
V̄ − E(V̄ )√

Var(V̄ )

L−→ N(0, 1)

其中 E(Ui) = p1, E(Vj) = p2, Var(Ū) = p1(1− p1)/m, Var(V̄ ) = p2(1− p2)/n，故有

(V̄ − Ū)− (p2 − p1)√
p1(1− p1)

m
+

p2(1− p2)

n

L−→ N(0, 1)

又因为 Ū , V̄ 为求和形式，由大数定律

Ū
P−→ E(Ui) = p1 V̄

P−→ E(Vj) = p2

其中 p1, p2是常数，不随机。所以有
√

Ū(1− Ū)

m
+

V̄ (1− V̄ )

n

/√
p1(1− p1)

m
+

p2(1− p2)

n
P−→ 1

由 Slutsky定理知
(V̄ − Ū)− (p2 − p1)√
Ū(1− Ū)

m
+

V̄ (1− V̄ )

n

L−→ N(0, 1)

注意到 Ū = X/m, V̄ = Y/n，从而有 p2 − p1的 1− α近似置信区间为

CI(p2−p1) =

[(
Y

n
− X

m

)
± z1−α/2

√
X(m−X)

m3
+

Y (n− Y )

n3

]

其中 z1−α/2为标准正态分布的上 1− α/2分位数点。
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HW10第十次作业解答

更新：2026年 1月 9日

Exercise 1

设 X1, · · · , Xn
i.i.d.∼ Γ(α,λ)，其中 α已知，λ > 0。已知总体的密度函数为

f(x;α,λ) =
λα

Γ(α)
xα−1e−λx

试证明：X̄/α是 g(λ) = 1/λ的有效估计。

证明 先求 g(λ)的C-R下界。注意到 g′(λ) = −λ−2；又X ∼ Γ(α,λ)，即有E(X) = α/λ，Var(X) =

α/λ2。从而 Fisher信息量为

I(λ) = Eλ

(
∂ log f(X;λ)

∂λ

)2

= Eλ

(α
λ
−X

)2
=

α2

λ2
− 2α

λ
E(X) + E(X2)

=
α2

λ2
− 2α

λ
· α
λ
+

[
α

λ2
+
(α
λ

)2]
=

α2 − 2α2 + α + α2

λ2
=

α

λ2

如此，C-R下界为
Varλ(ĝ(X)) ≥ [g′(λ)]2

nI(λ)
=

λ−4

nα/λ2
=

1

nαλ2

其中 ĝ(X) = X̄/α。而

Varλ(X̄/α) =
1

n2α2
Varλ

(
n∑

i=1

Xi

)
=

1

n2α2
· nα
λ2

=
1

nαλ2

即有 Varλ(ĝ(X))达到了 C-R下界，为 UMVUE。效率为 eĝ(λ) = 1是有效估计。

Exercise 2

设 X1, · · · , Xn
i.i.d.∼ N(a,σ2)，其中 a已知。证明：

1

n

√
π

2

n∑

i=1

|Xi − a|

为 σ的无偏估计，且效率为 1/(π − 2)。



证明 记 Yi = (Xi − a)/σ，于是有 Yi
i.i.d.∼ N(0, 1)。从而

E(|Y |) =
ˆ ∞

−∞
|y| 1√

2π
e−y2/2 dy = 2

ˆ ∞

0

y
1√
2π

e−y2/2 dy.

令 t = y2

2，则 dt = y dy，因此

E(|Y |) = 2√
2π

ˆ ∞

0

e−t dt =
2√
2π

=

√
2

π

而有 E(Y 2) = 1，因此

Var(|Y |) = E(|Y |2)− (E|Y |)2 = 1− 2

π

那么有

E(σ̂) = E
(
1

n

√
π

2

n∑

i=1

|Xi − a|
)

= E
(
1

n

√
π

2

n∑

i=1

σ|Yi|
)

= σ · 1
n

√
π

2

n∑

i=1

E(|Yi|) = σ · 1
n

√
π

2
· n
√

2

π
= σ

故 σ̂是 σ的无偏估计。同理，可求 σ̂的方差

Var(σ̂) =
1

n2

π

2

n∑

i=1

σ2Var(|Yi|) =
π

2n

(
1− 2

π

)
σ2 =

π − 2

2n
σ2

而 C-R下界为 [g′(σ2)]2[nI(σ2)]−1，其中 g′(σ2) = (
√
σ2)′ = 1/(2σ)，而 Fisher信息量为

I(σ2) = E
[

∂

∂σ2

(
−1

2
log(2πσ2)− 1

2σ2
(X − a)2

)]2
= E

(
− 1

2σ2
+

1

2σ4
(X − a)2

)2

=
1

4σ4
− 1

2σ6
E(X − a)2 +

1

4σ8
E(X − a)4 =

1

4σ4
− 1σ2

2σ6
+

3σ4

4σ8
=

1

2σ4

于是效率为

e =
[g′(σ2)]2[nI(σ2)]−1

Var(σ̂)
=

(
1
2σ

)2 ( n
2σ4

)−1

π−2
2n σ2

=
1

π − 2
!

Exercise 3

设 X1, · · · , Xn
i.i.d.∼ U(0, θ)，其中 θ > 0为未知参数。记 X(n) = max{X1, · · · , Xn}，下面进

行假设检验

H0 : θ ≥ 2 ↔ H1 : θ < 2

取拒绝域为

W = {(X1, · · · , Xn) : X(n) ≤ 1.5}

试求此检验犯第一类错误的概率的最大值。
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解答 对于 X1, . . . , Xn
i.i.d.∼ U(0, θ)，X(n) = max{X1, . . . , Xn}的分布函数为

FX(n)
(x) = P(X(n) ≤ x) =

(x
θ

)n
, 0 ≤ x ≤ θ

在原假设 H0 : θ ≥ 2下，此检验的第一类错误概率为

α(θ) = Pθ(X(n) ≤ 1.5) =

(
1.5

θ

)n

, θ ≥ 2

由于函数 (1.5/θ)n在 θ ≥ 2上严格单调递减，因此其最大值在 θ = 2处取得，于是

sup
θ∈Θ0

α(θ) =

(
1.5

2

)n

=

(
3

4

)n

因此，此检验第一类错误概率的最大值为 (3/4)n。

Exercise 4

设 X1, · · · , Xm
i.i.d.∼ Poi(λ1)和 Y1, · · · , Yn

i.i.d.∼ Poi(λ2)，且样本 X1, · · · , Xm 和 Y1, · · · , Yn 相

互独立。用大样本方法检验

H0 : λ2 − λ1 = 0 ↔ H1 : λ2 − λ1 ̸= 0

检验水平 α给定。

解答 令样本均值为

X̄ =
1

m

m∑

i=1

Xi, Ȳ =
1

n

n∑

j=1

Yj.

由中心极限定理，当m,n → ∞时

X̄ − λ1√
λ1/m

L−→ N(0, 1)
Ȳ − λ2√
λ2/n

L−→ N(0, 1)

且两者渐近独立。于是有
(Ȳ − X̄)− (λ2 − λ1)√

λ1

m
+

λ2

n

L−→ N(0, 1)

构造检验统计量

T =
Ȳ − X̄√
X̄

m
+

Ȳ

n

由大数定理 X̄
P−→ E(Xi) = λ1, Ȳ

P−→ E(Yj) = λ2,。当H0 : λ2 − λ1 = 0成立时，结合 Slutsky定
理，有 T

L−→ N(0, 1)。于是置信水平为 1− α的拒绝域为

W = {(X,Y ) : |T | ≥ zα/2}

其中 zα/2 为标准正态分布 N(0, 1) 的上 α/2 分位数点。检验的 p 值为 Pr(Z > |T |)，其中 Z ∼
N(0, 1)。
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HW11第十一次作业解答

更新：2026年 1月 9日

Exercise 1

设 X1, · · · , Xm
i.i.d.∼ N(µ1,σ2)，Y1, · · · , Yn

i.i.d.∼ N(µ2,σ2)，其中 σ2未知。且样本 X1, · · · , Xm

和 Y1, · · · , Yn相互独立。求下列检验问题水平为 α的似然比检验

H0 : µ2 − µ1 = 0 ↔ H1 : µ2 − µ1 ̸= 0

解答 首先写出似然函数

L = (2πσ2)−m/2 exp

{
− 1

2σ2

m∑

i=1

(Xi − µ1)
2

}
(2πσ2)−n/2 exp

{
− 1

2σ2

n∑

j=1

(Yj − µ2)
2

}

= (2πσ2)−
m+n

2 exp

{
− 1

2σ2

[
m∑

i=1

(Xi − µ1)
2 +

n∑

j=1

(Yj − µ2)
2

]}

容易得到在全集 Θ下的MLE为

µ̂Θ
1 = X̄ µ̂Θ

2 = Ȳ σ̂2
Θ =

1

m+ n

[
m∑

i=1

(Xi − X̄)2 +
n∑

j=1

(Yj − Ȳ )2
]

于是有对应的似然函数为

sup
Θ

L = (2πσ̂2
Θ)

−m+n
2 exp

{
− 1

2σ̂2
Θ

· (m+ n)σ̂2
Θ

}
= (2πσ̂2

Θ)
−m+n

2 e−
m+n

2 = (2πeσ̂2
Θ)

−m+n
2

在 H0对应的 Θ0下，有 µ1 = µ2。于是MLE为

µ̂Θ0 =
1

m+ n

[
m∑

i=1

Xi +
n∑

j=1

Yj

]
σ̂2
Θ0

=
1

m+ n

[
m∑

i=1

(Xi − µ̂Θ0)2 +
n∑

j=1

(Yj − µ̂Θ0)2
]

于是有对应的似然函数为

sup
Θ0

L = (2πσ̂2
Θ0
)−

m+n
2 exp

{
− 1

2σ̂2
Θ0

· (m+ n)σ̂2
Θ0

}
= (2πσ̂2

Θ0
)−

m+n
2 e−

m+n
2 = (2πeσ̂2

Θ0
)−

m+n
2



综上，可有似然比为

λ =
supΘ L

supΘ0
L

=

(
σ̂2
Θ0

σ̂2
Θ

)m+n
2

=

(∑m
i=1(Xi − µ̂Θ0)2 +

∑n
j=1(Yj − µ̂Θ0)2

∑m
i=1(Xi − X̄)2 +

∑n
j=1(Yj − Ȳ )2

)m+n
2

记 µ̂Θ0 为 Z̄ 则有

Z̄ =
mX̄ + nȲ

m+ n

似然比转化为

λ =

(∑m
i=1(Xi − X̄ + X̄ − Z̄)2 +

∑n
j=1(Yj − Ȳ + Ȳ − Z̄)2

∑m
i=1(Xi − X̄)2 +

∑n
j=1(Yj − Ȳ )2

)m+n
2

记 (m+ n− 2)S2
p =

∑m
i=1(Xi − X̄)2 +

∑n
j=1(Yj − Ȳ )2，于是有

λ =

(
(m+ n− 2)S2

p +m(X̄ − Z̄)2 + n(Ȳ − Z̄)2

(m+ n− 2)S2
p

)m+n
2

又注意到 Z̄ 的定义，故有

m(X̄ − Z̄)2 + n(Ȳ − Z̄)2 = m

(
nX̄ − nȲ

m+ n

)2

+ n

(
mȲ −mX̄

m+ n

)2

=
mn

(m+ n)2
(Ȳ − X̄)2

代入 λ有似然比为

λ =

⎛

⎜⎝
(m+ n− 2)S2

p +
mn

(m+ n)2
(Ȳ − X̄)2

(m+ n− 2)S2
p

⎞

⎟⎠

m+n
2

=

(
1 +

mn(Ȳ − X̄)2

(m+ n− 2)(m+ n)2S2
p

)m+n
2

记检验统计量

T =
Ȳ − X̄

Sp

√
1

m
+

1

n

于是似然比化为

λ =

(
1 +

T 2

(m+ n− 2)(m+ n)

)m+n
2

于是，似然比 λ关于 T 单增。则待定拒绝域形如

D = {(X,Y ) : |T | = |T (X,Y )| > c}

又因为 T 在 H0 : µ2 − µ1 = 0下服从 tdf，其中自由度 df = m+ n− 2。于是 α水平的拒绝域为

D = {(X,Y ) : |T | = |T (X,Y )| > tm+n−2(α/2)}

其中 tm+n−2(α/2)为 tm+n−2的上 α/2分位数点。
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Exercise 2

设 X1, · · · , Xm
i.i.d.∼ N(µ1,σ2

1)，Y1, · · · , Yn
i.i.d.∼ N(µ2,σ2

1)，且样本 X1, · · · , Xm 和 Y1, · · · , Yn

相互独立。求下列检验问题水平为 α的似然比检验

H0 : σ
2
1 = σ2

2 ↔ H1 : σ
2
1 ̸= σ2

2

解答 首先写出似然函数

L = (2πσ2
1)

−m/2 exp

{
− 1

2σ2
1

m∑

i=1

(Xi − µ1)
2

}
(2πσ2

2)
−n/2 exp

{
− 1

2σ2
2

n∑

j=1

(Yj − µ2)
2

}

在全集 Θ下的MLE为

µ̂Θ
1 = X̄ µ̂Θ

2 = Ȳ

σ̂2
1 =

1

m

m∑

i=1

(Xi − X̄)2 := S2
X σ̂2

2 =
1

n

n∑

j=1

(Yj − Ȳ )2 := S2
Y

对应的似然函数为

sup
Θ

L = (2πσ̂2
1)

−m
2 exp

{
− 1

2σ̂2
1

(mσ̂2
1)

}
(2πσ̂2

2)
−n

2 exp

{
− 1

2σ̂2
2

(nσ̂2
2)

}
= (2πeσ̂2

1)
−m

2 (2πeσ̂2
2)

−n
2

而在 H0 : σ2
1 = σ2

2 = σ2对应的 Θ0下的MLE为

µ̂Θ0
1 = X̄ µ̂Θ0

2 = Ȳ

σ̂2 =
1

m+ n

[
m∑

i=1

(Xi − X̄)2 +
n∑

j=1

(Yj − Ȳ )2
]
=

mS2
X + nS2

Y

m+ n

对应的似然函数为

sup
Θ0

L = (2πσ̂2)−
m
2 (2πσ̂2)−

n
2 exp

{
− 1

2σ̂2
(m+ n)σ̂2

}
= (2πeσ̂2)−

m+n
2

综上，似然比为

λ =
supΘ L

supΘ0
L

=
(2πeσ̂2

1)
−m

2 (2πeσ̂2
2)

−n
2

(2πeσ̂2)−
m+n

2

=
(σ̂2

1)
−m

2 (σ̂2
2)

−n
2

(σ̂2)−
m+n

2

=
(σ̂2)

m+n
2

(σ̂2
1)

m
2 (σ̂2

2)
n
2

=

(
mS2

X + nS2
Y

m+ n

)m+n
2

(S2
X)

m
2 (S2

Y )
n
2

=

(
mS2

X + nS2
Y

m+ n

)m+n
2

(S2
Y )

−m+n
2

(S2
X)

m
2 (S2

Y )
n
2 (S2

Y )
−m+n

2

=

(
mS2

X/S
2
Y + n

m+ n

)m+n
2

(S2
X/S

2
Y )

m
2

=

(
(mS2

X)/(nS
2
Y ) + 1

m/n+ 1

)m+n
2

[(mS2
X)/(nS

2
Y )]

m
2 (m/n)−

m
2

记 F = (mS2
X)/(nS

2
Y )则有

λ =

(
F + 1

m/n+ 1

)m+n
2

F
m
2 (m/n)−

m
2

=
(m/n)

m
2

(m/n+ 1)
m+n

2

(F + 1)
m+n

2

F
m
2

3



对 λ的核部分 λ∗取对数，得到

log λ∗ =
m+ n

2
log(1 + F )− m

2
logF

于是有关于 F 的导数为

∂ log λ∗

∂F
=

m+ n

2

1

1 + F
− m

2

1

F
=

(m+ n)F −m(1 + F )

2F (1 + F )
=

nF −m

2F (1 + F )

于是有，当 F ≤ m/n时，λ随 F 单减；而当 F > m/n时，λ随 F 单增。于是，检验的拒绝域

形如

D = {(X,Y ) : (F < k1) ∪ (F > k2)}

其中 k1 < k2待定。不难发现，在 H0 : σ2
1 = σ2

2 = σ2下，有

F =
mS2

X/σ
2

nS2
Y /σ

2
∼ Fm−1,n−1

简单起见，可以取 F 分布的上下 α/2分位数点。于是检验的 α水平的拒绝域为

D = {(X,Y ) : [F < Fm−1,n−1(1− α/2)] ∪ [F > Fm−1,n−1(α/2)]}

Exercise 3

设 X1, · · · , Xn
i.i.d.∼ Exp(λ)，求

1. H0 : λ = λ0 ↔ H1 : λ ̸= λ0

2. H0 : λ ≤ λ0 ↔ H1 : λ > λ0

的水平为 α的似然比检验。

解答 (1) 由指数函数的密度函数 f(X;λ) = λe−λX · I(X ≥ 0)，可知似然函数为

L(X;λ) =
n∏

i=1

f(Xi;λ) = λn exp

{
−λ

n∑

i=1

Xi

}
· I(X(1) ≥ 0)

容易得到 λ的MLE为 X̄−1。记 T =
∑n

i=1 Xi = nX̄，于是有 T ∼ Γ(n,λ)。针对检验问题 1，有
似然比为

Λ =
supΘ L(X;λ)

supΘ0
L(X;λ)

=
(n/T )n exp {−(n/T )T} · I(X(1) ≥ 0)

λn
0 exp {−λ0T} · I(X(1) ≥ 0)

=

(
n

eλ0T

)n

eλ0T

容易得似然函数核部分 Λ∗的对数为

logΛ∗ = −n log T + λ0T ⇒ ∂ logΛ∗

∂T
= −n

T
+ λ0

由此可知，当 T ≤ n/λ0时，似然比 Λ关于 T 单减；而当 T > n/λ0时，似然比 Λ关于 T 单增。

所以拒绝域形如

D = {X : (T < k1) ∪ (T > k2)}

4



其中 k1 < k2 待定。又因为当 H0 : λ = λ0 成立时，有 T ∼ Γ(n,λ0)，即有 2λ0T ∼ χ2
2n。于是简

单起见，可取水平为 α的拒绝域为

D =

{
X :

[
T <

χ2
2n(1− α/2)

2λ0

]
∪
[
T >

χ2
2n(α/2)

2λ0

]}

解答 (2) 针对 H0 : λ ≤ λ0，原假设下的极大对数似然变为

sup
Θ0

L(X;λ) =

⎧
⎪⎨

⎪⎩

λn
0 exp {−λ0T} · I(X(1) ≥ 0), λ0 ≤

n

T

sup
Θ

L(X;λ), λ0 >
n

T

于是，似然比为

Λ =

⎧
⎪⎨

⎪⎩

(
n

eλ0T

)n

eλ0T , λ0 ≤
n

T

1, λ0 >
n

T

而由之前的推导，当 λ0 ≤ n/T 即 T ≤ n/λ0 时，似然比 Λ关于 T 单减。于是 Λ是关于 T 不增

的。从而有效用函数为

ϕ(X) =

⎧
⎨

⎩
1, Λ > c

0, Λ ≤ c
=

⎧
⎨

⎩
1, T < k

0, T ≥ k

其中 c, k待定。注意到 H0 : λ ≤ λ0 ⇒ λ/λ0 ≤ 1，于是有

PH0

(
T <

χ2
2n(1− α)

2λ0

)
= PH0

(
T <

χ2
2n(1− α)

2λ

λ

λ0

)
≤ PH0

(
T <

χ2
2n(1− α)

2λ

)
= α

其中 χ2
2n(1− α)为 χ2

2n的上 1− α分位数点。于是我们有该检验的 1− α水平的拒绝域为

D =

{
X : T = T (X) =

n∑

i=1

Xi <
χ2
2n(1− α)

2λ0

}

Exercise 4

设 X1, · · · , Xn
i.i.d.∼ B(1, p)，用大样本方法检验

H0 : p = p0 ↔ H1 : p ̸= p0

的水平为 α的似然比检验。

解答 对于 Bernoulli实验，其似然函数为

L(X; p) =
n∏

i=1

pXi(1− p)1−Xi = pnX̄(1− p)n−nX̄ Xi ∈ {0, 1}
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在全集 Θ下，p的MLE为 X̄。于是，得似然比为

λ =
supΘ L(X; p)

supΘ0
L(X; p)

=
X̄nX̄(1− X̄)n−nX̄

pnX̄0 (1− p0)n−nX̄

取对数有

log λ = nX̄ log X̄ + (n− nX̄) log(1− X̄)− nX̄ log p0 − (n− nX̄) log(1− p0)

关于统计量 X̄ 的导数为

∂ log λ

∂X̄
= n log X̄ + n− n log(1− X̄)− n− n log p0 + n log(1− p0)

= n

(
log

X̄

1− X̄
− log

p0
1− p0

)

故有，当 logitX̄ ≤ logitp0时，λ关于 X̄ 单减；而当 logitX̄ > logitp0时，λ关于 X̄ 单增。特别

地，logit函数为单增函数，故上述可等价于：当 X̄ ≤ p0时，λ关于 X̄ 单减；而当 X̄ > p0时，λ

关于 X̄ 单增。所以，容易得到拒绝域形如

D = {X : (X̄ < k1) ∪ (X̄ > k2)}

其中 k1 < k2待定。又由中心极限定理，当 n充分大时，有

X̄ − E(Xi)√
Var(Xi)

L−→ N(0, 1) ⇒
√
n(X̄ − p)√
p(1− p)

L−→ N(0, 1)

于是有

PH0

(∣∣∣∣∣

√
n(X̄ − p0)√
p0(1− p0)

∣∣∣∣∣ > zα/2

)
= α

其中 zα/2为标准正态分布的上 α/2分位数点。综上可知，水平为 α的拒绝域为

D =

{
X :

[
X̄ < p0 − zα/2

√
p0(1− p0)

n

]
∪
[
X̄ > p0 + zα/2

√
p0(1− p0)

n

]}
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